Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. Andrew is active.

Publication


Featured researches published by Y. Andrew.


Plasma Physics and Controlled Fusion | 2004

EDGE2D modelling of edge profiles obtained in JET diagnostic optimized configuration

A. Kallenbach; Y. Andrew; M. Beurskens; G. Corrigan; T. Eich; S. Jachmich; M. Kempenaars; A. Korotkov; A. Loarte; G. F. Matthews; P. Monier-Garbet; G. Saibene; J. Spence; W. Suttrop; Jet Efda Contributors

Nine type-I ELMy H-mode discharges in diagnostic optimized configuration in JET are analysed with the EDGE2D/NIMBUS package. EDGE2D solves the fluid equations for the conservation of particles, momentum and energy for hydrogenic and impurity ions, while neutrals are followed with the two-dimensional Monte Carlo module NIMBUS. Using external boundary conditions from the experiment, the perpendicular heat conductivities χi,e and the particle transport coefficients D, v are varied until good agreement between code result and measured data is obtained. A step-like ansatz is used for the edge transport parameters for the outer core region, the edge transport barrier and the outer scrape-off layer. The time-dependent effect of edge localized modes on the edge profiles is simulated with anadhoc ELM model based on the repetitive increase of the transport coefficients χi,e and D. The values of the transport coefficients are matched to experimental data mapped to the outer midplane, in the course of which radial shifts of experimental profiles of the order of 1 cm caused by the accuracy limit of the equilibrium reconstruction are taken into account. Simulated divertor profiles obtained from the upstream transport ansatz and the experimental boundary conditions agree with measurements, except a small region localized at the separatrix strike points which is supposed to be affected by direct ion losses. The integrated analysis using EDGE2D modelling, although still limited by the marginal spatial resolution of individual diagnostics, allows the characterization of profiles in the edge/pedestal region and supplies additional information on the separatrix position. The steep density gradient zone inside the separatrix shrinks compared to the electron temperature


Plasma Physics and Controlled Fusion | 2009

JET (3He)-D scenarios relying on RF heating: survey of selected recent experiments

D. Van Eester; E. Lerche; Y. Andrew; Tm Biewer; A. Casati; Kristel Crombé; E. de la Luna; G. Ericsson; R. Felton; L. Giacomelli; C. Giroud; N. C. Hawkes; C. Hellesen; Anders Hjalmarsson; E. Joffrin; J. Källne; V. Kiptily; P. Lomas; P. Mantica; A. Marinoni; M.-L. Mayoral; J. Ongena; M. E. Puiatti; M. Santala; S. Sharapov; M. Valisa

Recent JET experiments have been devoted to the study of (He-3)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[He-3] > 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[He-3] (approximate to 18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in (He-3)-D plasmas are fairly narrow-giving rise to localized heat sources-the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of RF heating for impurity transport is also briefly summarized.


Nuclear Fusion | 2008

Effect of toroidal field ripple on plasma rotation in JET

P. de Vries; A. Salmi; V. Parail; C. Giroud; Y. Andrew; Tm Biewer; Kristel Crombé; I. Jenkins; Thomas Johnson; V. Kiptily; A. Loarte; J. Lönnroth; A. Meigs; N. Oyama; R. Sartori; G. Saibene; H. Urano; K.-D. Zastrow

Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.


Nuclear Fusion | 2014

L–H power threshold studies in JET with Be/W and C wall

C. F. Maggi; E. Delabie; T. M. Biewer; M. Groth; N. Hawkes; M. Lehnen; E. de la Luna; K. McCormick; C. Reux; F. Rimini; E. R. Solano; Y. Andrew; C. Bourdelle; V. Bobkov; M. Brix; G. Calabrò; A. Czarnecka; J. Flanagan; E. Lerche; S. Marsen; I. Nunes; D. Van Eester; M. Stamp; Jet Efda Contributors

A comparison of the L?H power threshold (Pthr) in JET with all carbon, JET-C, and beryllium/tungsten wall (the ITER-like choice), JET-ILW, has been carried out in experiments with slow input power ramps and matched plasma shapes, divertor configuration and IP/BT pairs. The low density dependence of the L?H power threshold, namely an increase below a minimum density ne,min, which was first observed in JET with the MkII-GB divertor and C wall and subsequently not observed with the current MkII-HD geometry, is observed again with JET-ILW. At plasma densities above ne,min, Pthr is reduced by ?30%, and by ?40% when the radiation from the bulk plasma is subtracted (Psep), with JET-ILW compared to JET-C. At the L?H transition the electron temperature at the edge, where the pedestal later develops, is also lower with JET-ILW, for a given edge density. With JET-ILW the minimum density is found to increase roughly linearly with magnetic field, , while the power threshold at the minimum density scales as . The H-mode power threshold in JET-ILW is found to be sensitive both to variations in main plasma shape (Psep decreases with increasing lower triangularity and increases with upper triangularity) and in divertor configuration. When the data are recast in terms of Psep and Zeff or subdivertor neutral pressure a linear correlation is found, pointing to a possible role of Zeff and/or subdivertor neutral pressure in the L?H transition physics. Depending on the chosen divertor configuration, Pthr can be up to a factor of two lower than the ITPA scaling law for densities above ne,min. A shallow edge radial electric field well is observed at the L?H transition. The edge impurity ion poloidal velocity remains low, close to its L-mode values, ?5?km?s?1???2?3?km?s?1, at the L?H transition and throughout the H-mode phase, with no measureable increase within the experimental uncertainties. The edge toroidal rotation profile does not contribute to the depth of the negative Er well and thus may not be correlated with the formation of the edge transport barrier in JET.


Plasma Physics and Controlled Fusion | 2012

Improved Confinement in JET hybrid discharges

J. Hobirk; F. Imbeaux; F. Crisanti; P. Buratti; C. Challis; E. Joffrin; B. Alper; Y. Andrew; P. Beaumont; M. Beurskens; A. Boboc; A. Botrugno; M. Brix; G. Calabrò; I. Coffey; S. Conroy; O. Ford; D. Frigione; J. Garcia; C. Giroud; N. Hawkes; D. Howell; I. Jenkins; D. Keeling; M. Kempenaars; H. Leggate; Ph. Lotte; E. de la Luna; G. Maddison; P. Mantica

A new technique has been developed to produce plasmas with improved confinement relative to the H-98,H-y2 scaling law (ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database ITER Physics Basics Editors and ITER EDA 1999 Nucl. Fusion 39 2175) on the JET tokamak. In the mid-size tokamaks ASDEX upgrade and DIII-D heating during the current formation is used to produce a flat q-profile with a minimum close to 1. On JET this technique leads to q-profiles with similar minimum q but opposite to the other tokamaks not to an improved confinement state. By changing the method utilizing a faster current ramp with temporary higher current than in the flattop (current overshoot) plasmas with improved confinement (H-98,H-y2 = 1.35) and good stability (beta(N) approximate to 3) have been produced and extended to many confinement times only limited by technical constraints. The increase in H-98,H-y2-factor is stronger with more heating power as can be seen in a power scan. The q-profile development during the high power phase in JET is reproduced by current diffusion calculated by TRANSP and CRONOS. Therefore the modifications produced by the current overshoot disappear quickly from the edge but the confinement improvement lasts longer, in some cases up to the end of the heating phase.


Plasma Physics and Controlled Fusion | 2007

Active control of type-I edge localized modes on JET

Y. Liang; H. R. Koslowski; P.R. Thomas; E. Nardon; S. Jachmich; B. Alper; P. Andrew; Y. Andrew; G. Arnoux; Y. Baranov; M. Becoulet; M. Beurskens; T. M. Biewer; M. Bigi; Kristel Crombé; E. de la Luna; P. de Vries; T. Eich; H.G. Esser; W. Fundamenski; S. Gerasimov; C. Giroud; M. Gryaznevich; D. Harting; N. Hawkes; S. Hotchin; D. Howell; A. Huber; M. Jakubowski; V. Kiptily

The operational domain for active control of type-I edge localized modes (ELMs) with an n = 1 external magnetic perturbation field induced by the ex-vessel error field correction coils on JET has been developed towards more ITER-relevant regimes with high plasma triangularity, up to 0.45, high normalized beta, up to 3.0, plasma current up to 2.0 MA and q95 varied between 3.0 and 4.8. The results of ELM mitigation in high triangularity plasmas show that the frequency of type-I ELMs increased by a factor of 4 during the application of the n = 1 fields, while the energy loss per ELM, ΔW/W, decreased from 6% to below the noise level of the diamagnetic measurement (<2%). No reduction of confinement quality (H98Y) during the ELM mitigation phase has been observed. The minimum n = 1 perturbation field amplitude above which the ELMs were mitigated increased with a lower q95 but always remained below the n = 1 locked mode threshold. The first results of ELM mitigation with n = 2 magnetic perturbations on JET demonstrate that the frequency of ELMs increased from 10 to 35 Hz and a wide operational window of q95 from 4.5 to 3.1 has been found.


Physical Review Letters | 2010

Observation of Confined Current Ribbon in JET Plasmas

E. R. Solano; P. Lomas; B. Alper; G. Xu; Y. Andrew; G. Arnoux; A. Boboc; Lucía Barrera; P. Belo; M. N. A. Beurskens; M. Brix; Kristel Crombé; E. de la Luna; S. Devaux; T. Eich; S. Gerasimov; C. Giroud; D. Harting; D. Howell; A. Huber; G. Kocsis; A. Korotkov; A. López-Fraguas; M. F. F. Nave; Elisabeth Rachlew; F. Rimini; S. Saarelma; A. Sirinelli; S. D. Pinches; H. Thomsen

We report the identification of a localized current structure inside the JET plasma. It is a field-aligned closed helical ribbon, carrying current in the same direction as the background current profile (cocurrent), rotating toroidally with the ion velocity (corotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first edge localized mode.


Nuclear Fusion | 2007

Toroidal and poloidal momentum transport studies in JET

T. Tala; Y. Andrew; Kristel Crombé; P. de Vries; X. Garbet; N. Hawkes; Hans Nordman; K. Rantamäki; Pär Strand; A. Thyagaraja; Jan Weiland; E. Asp; Y. Baranov; C. Challis; G. Corrigan; Annika K. Eriksson; C. Giroud; M.-D. Hua; I. Jenkins; H.C.M. Knoops; X. Litaudon; P. Mantica; V. Naulin; V. Parail; K.-D. Zastrow

This paper reports on the recent studies of toroidal and poloidal momentum transport in JET. The ratio of the global energy confinement time to the momentum confinement is found to be close to τE/τφ=1 except for the low density discharges where the ratio is τE/τφ=2-3. On the other hand, local transport analysis of tens of discharges shows that the ratio of the local effective momentum diffusivity to the ion heat diffusivity is χφ/χi�0.1-0.4 rather than unity, as expected from the global confinement times and used in ITER predictions. The apparent discrepancy in the global and local momentum versus ion heat transport is explained by the fact that momentum confinement within edge pedestal is worse than that of the ion heat and thus, momentum pedes- tal is weaker than that of ion temperature. Another observation is that while the Ti has a threshold in R/LTi and profiles are stiff, the gradient in vφ increases with increasing torque and no threshold is found. Predictive trans- port simulations also confirm that χφ/χi�0.1-0.4 reproduce the core toroidal velocity profiles well. Concerning poloidal velocities on JET, the experimental measurements show that the carbon poloidal velocity can be an or- der of magnitude above the neo-classical estimate within the ITB. This significantly affects the calculated radial electric field and therefore, the E◊B flow shear used for example in transport simulations. The Weiland model reproduces the onset, location and strength of the ITB well when the experimental poloidal rotation is used while it does not predict an ITB using the neo-classical poloidal velocity. The most plausible explanation for the gen- eration of the anomalous poloidal velocity is the turbulence driven flow through the Reynolds stress. Both TRB and CUTIE turbulence codes show the existence of an anomalous poloidal velocity, being significantly larger than the neo-classical values. And similarly to experiments, the poloidal velocity profiles peak in the vicinity of the ITB and is caused by flow due to the Reynolds stress.


Plasma Physics and Controlled Fusion | 2002

The formation and evolution of extreme shear reversal in JET and its influence on local thermal transport

N C Hawkes; Y. Andrew; C. D. Challis; R. DeAngelis; V Drozdov; J. Hobirk; E. Joffrin; Ph. Lotte; Elisabeth Rachlew; S. Reyes-Cortes; F. Sattin; E. R. Solano; B. C. Stratton; T. Tala; M. Valisa

In JET discharges where lower hybrid heating and current drive (LHCD) is applied early during the current ramp, a region of the plasma with zero current density is formed near the axis. At the boundary of this region the current density is large and Bθ increases rapidly over a small distance. In the central region the safety factor, q, is effectively infinite, but this falls steeply in the boundary region. Outside the boundary region q reaches a minimum, where the magnetic shear s≡r/q (dq/dr) becomes zero. The formation of this region of zero current is dependent on both the heating and the current drive effects of the LHCD. When LHCD is switched off the current profile begins to relax towards the resistive peaked current distribution of fully inductive tokamak operation. If LHCD is not used in the current rise then these current profiles are not established. Although the physical mechanism exists to drive the central plasma current below zero, in most cases it appears to be prevented from going negative. At least one MHD mechanism has been identified which could be responsible for this. The presence of the zero central current is closely linked to the periodic relaxation events seen in these discharges. In these discharges, internal transport barriers have been observed with additional heating powers substantially below the values required to obtain barriers in monotonic q profile cases.


Plasma Physics and Controlled Fusion | 2007

Toroidal and poloidal momentum transport studies in tokamaks

T. Tala; Kristel Crombé; P. de Vries; J. Ferreira; P. Mantica; A. G. Peeters; Y. Andrew; R. Budny; G. Corrigan; Annika K. Eriksson; X. Garbet; C. Giroud; M.-D. Hua; Hans Nordman; V. Naulin; M. F. F. Nave; V. Paraij; K. Rantamaeki; B. D. Scott; Pär Strand; G. Tardini; A. Thyagaraja; Jan Weiland; K.-D. Zastrow

The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. tau(E)/tau(phi)approximate to 1 have been reported on several tokamaks. It is more important though, to study the local transport both in the core and edge plasma separately as, for example, in the core plasma, a large scatter in the ratio of the local effective momentum diffusivity to the ion heat diffusivity chi(phi eff)/chi(i.eff) among different tokamaks can be found. For example, the value of effective Prandtl number is typically around chi(phi eff)/chi(i.eff)approximate to 0.2 on JET while still tau(E)/tau(phi)approximate to 1 holds. Perturbative NBI modulation experiments on JET have shown, however, that a Prandtl number chi(phi)/chi(i) of around 1 is valid if there is an additional, significant inward momentum pinch which is required to explain the amplitude and phase behaviour of the momentum perturbation. The experimental results, i.e. the high Prandtl number and pinch, are in good qualitative and to some extent also in quantitative agreement with linear gyro-kinetic simulations. In contrast to the toroidal momentum transport which is clearly anomalous, the poloidal velocity is usually believed to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly affect the calculated radial electric field and therefore the E x B flow shear and hence modify and can significantly improve the simulation predictions. Several fluid turbulence codes have been used to identify the mechanism driving the poloidal velocity to such high values. CUTIE and TRB turbulence codes and also the Weiland model predict the existence of an anomalous poloidal velocity, peaking in the vicinity of the ITB and driven dominantly by the flow due to the Reynolds stress. It is worth noting that these codes and models treat the equilibrium in a simplified way and this affects the geodesic curvature effects and geodesic acoustic modes. The neo-classical equilibrium is calculated more accurately in the GEM code and the simulations suggest that the spin-up of poloidal velocity is a consequence of the plasma profiles steepening when the ITB grows, following in particular the growth of the toroidal velocity within the ITB.

Collaboration


Dive into the Y. Andrew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Tala

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. M. Biewer

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Huber

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Beurskens

European Atomic Energy Community

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge