Y. C. Chow
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Y. C. Chow.
The Astrophysical Journal | 2008
G. Fossati; J. H. Buckley; I. H. Bond; S. M. Bradbury; D. A. Carter-Lewis; Y. C. Chow; W. Cui; A. Falcone; J. P. Finley; J. A. Gaidos; J. Grube; J. Holder; D. Horan; D. Horns; M. M. Jordan; D. Kieda; J. Kildea; H. Krawczynski; F. Krennrich; M. J. Lang; S. LeBohec; K. Lee; P. Moriarty; R. A. Ong; D. Petry; J. Quinn; G. H. Sembroski; S. P. Wakely; T. C. Weekes
We present a detailed analysis of week-long simultaneous observations of the blazar Mrk 421 at 2-60 keV X-rays (RXTE) and TeV γ-rays (Whipple and HEGRA) in 2001. Accompanying optical monitoring was performed with the Mt. Hopkins 48 inch telescope. The unprecedented quality of this data set enables us to establish the existence of the correlation between the TeV and X-ray luminosities, and also to start unveiling some of its characteristics, in particular its energy dependence and time variability. The source shows strong variations in both X-ray and γ-ray bands, which are highly correlated. No evidence of an X-ray/γ-ray interband lag τ is found on the full week data set, with τ 3 ks. A detailed analysis of the March 19 flare, however, reveals that data are not consistent with the peak of the outburst in the 2-4 keV X-ray and TeV band being simultaneous. We estimate a -->2.1 ± 0.7 ks TeV lag. The amplitudes of the X-ray and γ-ray variations are also highly correlated, and the TeV luminosity increases more than linearly with respect to the X-ray one. The high degree of correlation lends further support to the standard model in which a unique electron population produces the X-rays by synchrotron radiation and the γ-ray component by inverse Compton scattering. However, the finding that for the individual best observed flares the γ-ray flux scales approximately quadratically with respect to the X-ray flux poses a serious challenge to emission models for TeV blazars, as it requires rather special conditions and/or fine tuning of the temporal evolution of the physical parameters of the emission region. We briefly discuss the astrophysical consequences of these new findings in the context of the competing models for the jet emission in blazars.
Astroparticle Physics | 2006
J. Holder; R.W. Atkins; H. M. Badran; G. Blaylock; S. M. Bradbury; J. H. Buckley; K. L. Byrum; D. A. Carter-Lewis; O. Celik; Y. C. Chow; P. Cogan; W. Cui; M. K. Daniel; I. de la Calle Perez; C. Dowdall; P. Dowkontt; C. Duke; A. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. Fortson; K. Gibbs; G. H. Gillanders; O.J. Glidewell; J. Grube; K. Gutierrez; G. Gyuk; J. Hall; D. Hanna
Abstract The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.
The Astrophysical Journal | 2008
V. A. Acciari; M. Beilicke; G. Blaylock; S. M. Bradbury; J. H. Buckley; V. Bugaev; Y. Butt; K. L. Byrum; O. Celik; A. Cesarini; L. Ciupik; Y. C. Chow; P. Cogan; P. Colin; W. Cui; M. K. Daniel; C. Duke; T. Ergin; A. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. Fortson; D. Gall; K. Gibbs; G. H. Gillanders; J. Grube; R. Guenette; D. Hanna; E. Hays
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy γ-rays. The system was observed over several orbital cycles (between 2006 September and 2007 February) with the VERITAS array of imaging air Cerenkov telescopes. A signal of γ-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of -->Γ = 2.40 ± 0.16stat± 0.2sys and a flux above 300 GeV corresponding to 15%-20% of the flux from the Crab Nebula.
The Astrophysical Journal | 2009
V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Bautista; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; Yousaf M. Butt; K. L. Byrum; A. Cannon; Ö. Çelik; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; P. Colin; W. Cui; M. K. Daniel; R. Dickherber; C. Duke; Vikram V. Dwarkadas; T. Ergin; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson
We present evidence that the very-high-energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best-studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hours during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 06 16 51 +22 30 11 (J2000) +- 0.03_stat +- 0.08_sys degrees, with an intrinsic extension of 0.16 +- 0.03_stat +- 0.04_sys degrees. The VHE spectrum is well fit by a power law (dN/dE = N_0 * (E/TeV)^-Gamma) with a photon index of 2.99 +- 0.38_stat +- 0.3_sys and an integral flux above 300 GeV of (4.63 +- 0.90_stat +- 0.93_sys) * 10^-12 cm^-2 s^-1. These results are discussed in the context of existing models for gamma-ray production in IC 443.
The Astrophysical Journal | 2010
V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Bautista; M. Beilicke; W. Benbow; D. Boltuch; S. M. Bradbury; J. H. Buckley; V. Bugaev; Yousaf M. Butt; K. L. Byrum; A. Cannon; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; W. Cui; R. Dickherber; C. Duke; T. Ergin; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson; A. Furniss; N. Galante; D. Gall
We report on observations of very high energy γ rays from the shell-type supernova remnant (SNR) Cassiopeia A with the Very Energetic Radiation Imaging Telescope Array System stereoscopic array of four imaging atmospheric Cherenkov telescopes in Arizona. The total exposure time for these observations is 22 hr, accumulated between September and November of 2007. The γ-ray source associated with the SNR Cassiopeia A was detected above 200 GeV with a statistical significance of 8.3σ. The estimated integral flux for this γ-ray source is about 3% of the Crab-Nebula flux. The photon spectrum is compatible with a power law dN/dE E –Γ with an index Γ = 2.61 ± 0.24stat ± 0.2sys. The data are consistent with a point-like source. We provide a detailed description of the analysis results and discuss physical mechanisms that may be responsible for the observed γ-ray emission.
The Astrophysical Journal | 2008
V. A. Acciari; E. Aliu; M. Beilicke; W. Benbow; M. Böttcher; S. M. Bradbury; J. H. Buckley; V. Bugaev; Y. Butt; O. Celik; A. Cesarini; L. Ciupik; Y. C. Chow; P. Cogan; P. Colin; W. Cui; M. K. Daniel; T. Ergin; A. Falcone; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson; A. Furniss; D. Gall; G. H. Gillanders; J. Grube; R. Guenette; G. Gyuk
We report the detection of very high-energy -ray emission from the intermediate-frequencypeaked BLLacertae object WComae (z = 0.102) by VERITAS, an array of four imaging atmospheric-Cherenkov telescopes. The source was observed between January and April 2008. A strong outburst of -ray emission was measured in the middle of March, lasting for only four days. The energy spectrum measured during the two highest flare nights is fit by a power-law and is found to be very steep, with a differential photon spectral index of = 3 .81±0.35stat±0.34syst. The integral photon flux above 200GeV during those two nights corresponds to roughly 9% of the flux from the Crab Nebula. Quasi-simultaneous Swift observations at X-ray energies were triggered by the VERITAS observations. The spectral energy distribution of the flare data can be described by synchrotron-self-Compton (SSC) or external-Compton (EC) leptonic jet models, with the latter offering a more natural set of parameters to fit the data.
The Astrophysical Journal | 2009
V. A. Acciari; E. Aliu; T. Arlen; M. Beilicke; W. Benbow; M. Böttcher; S. M. Bradbury; J. H. Buckley; V. Bugaev; Yousaf M. Butt; K. L. Byrum; A. Cannon; O. Celik; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; W. Cui; M. K. Daniel; R. Dickherber; T. Ergin; A. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. Fortson; A. Furniss; D. Gall; K. Gibbs; G. H. Gillanders
The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007-2008 in VHE (very high energy; E > 100 GeV) γ rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 events is detected, corresponding to a significance of 21.2 standard deviations (σ), in these observations (32.8 hr live time). The observed integral flux above 200 GeV is 6% of the Crab Nebulas flux and shows evidence for variability on the timescale of days. The measured energy spectrum is characterized by a soft power law with photon index Γ = 4.1 ± 0.4stat ± 0.6sys. The radio galaxy 3C 66B is excluded as a possible source of the VHE emission.
The Astrophysical Journal | 2006
P. Rebillot; H. M. Badran; G. Blaylock; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; Y. C. Chow; P. Cogan; W. Cui; M. Daniel; C. Duke; Abe D. Falcone; S. J. Fegan; J. P. Finley; L. Fortson; G. H. Gillanders; J. Grube; K. Gutierrez; G. Gyuk; D. Hanna; J. Holder; D. Horan; S. B. Hughes; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea; K. Kosack; H. Krawczynski
We report on a multiwavelength campaign on the TeV γ-ray blazar Mrk 421 performed during 2002 December and 2003 January. These target of opportunity observations were initiated by the detection of X-ray and TeV γ-ray flares with the All Sky Monitor (ASM) on board the Rossi X-Ray Timing Explorer (RXTE) and the 10 m Whipple γ-ray telescope. The campaign included observational coverage in the radio (University of Michigan Radio Astronomy Observatory), optical (Boltwood, La Palma KVA 0.6 m; WIYN 0.9 m), X-ray (RXTE pointed telescopes), and TeV γ-ray (Whipple and HEGRA) bands. At TeV energies, the observations revealed several flares at intermediate flux levels, peaking between 1 and 1.5 times the flux from the Crab Nebula. While the time-averaged spectrum can be fitted with a single power law of photon index Γ = 2.8 from dNγ/dE ∝ E-Γ, we find some evidence for spectral variability. Confirming earlier results, the campaign reveals a rather loose correlation between the X-ray and TeV γ-ray fluxes. In one case, a very strong X-ray flare is not accompanied by a comparable TeV γ-ray flare. Although the source flux was variable in the optical and radio bands, the sparse sampling of the optical and radio light curves does not allow us to study the correlation properties in detail. We present a simple analysis of the data with a synchrotron self-Compton model, emphasizing that models with very high Doppler factors and low magnetic fields can describe the data.
The Astrophysical Journal | 2006
J. Perkins; H. M. Badran; G. Blaylock; S. M. Bradbury; P. Cogan; Y. C. Chow; W. Cui; M. K. Daniel; A. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. Fortson; G. H. Gillanders; K. Gutierrez; J. Grube; J. Hall; D. Hanna; J. Holder; D. Horan; S. B. Hughes; T. B. Humensky; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea; K. Kosack; H. Krawczynski; F. Krennrich; M. J. Lang
Galaxy clusters might be sources of TeV gamma rays emitted by high-energy protons and electrons accelerated by large-scale structure formation shocks, galactic winds, or active galactic nuclei. Furthermore, gamma rays may be produced in dark matter particle annihilation processes at the cluster cores. We report on observations of the galaxy clusters Perseus and A2029 using the 10 m Whipple Cerenkov telescope during the 2003-2004 and 2004-2005 observing seasons. We apply a two-dimensional analysis technique to scrutinize the clusters for TeV emission. In this paper we first determine flux upper limits on TeV gamma-ray emission from point sources within the clusters. Second, we derive upper limits on the extended cluster emission. We subsequently compare the flux upper limits with EGRET upper limits at 100 MeV and theoretical models. Assuming that the gamma-ray surface brightness profile mimics that of the thermal X-ray emission and that the spectrum of cluster cosmic rays extends all the way from thermal energies to multi-TeV energies with a differential spectral index of -2.1, our results imply that the cosmic-ray proton energy density is less than 7.9% of the thermal energy density for the Perseus Cluster.
The Astrophysical Journal | 2009
V. A. Acciari; E. Aliu; T. Arlen; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; Y. Butt; K. L. Byrum; O. Celik; A. Cesarini; L. Ciupik; Y. C. Chow; P. Cogan; P. Colin; W. Cui; M. K. Daniel; T. Ergin; A. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. Fortson; A. Furniss; G. H. Gillanders; J. Grube; R. Guenette; G. Gyuk; D. Hanna
The VERITAS collaboration reports the detection of very-high-energy gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z = 0.182. A gamma-ray signal was detected with a statistical significance of 10.4 standard deviations (10.4?) for the observations taken during the first three months of 2007, confirming the discovery of this object made by the MAGIC collaboration. The photon spectrum between ~160?GeV and ~1.8?TeV is well described by a power law with an index of ? = 3.08 ? 0.34stat ? 0.2sys. The integral flux is ?(E>200GeV) = (12.2 ? 2.6) ? 10?12 cm-2 s?1, which corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for very high energy flux variability. Using lower limits on the density of the extragalactic background light in the near to mid-infrared, we are able to limit the range of intrinsic energy spectra for 1ES?1218+304. We show that the intrinsic photon spectrum has an index that is harder than ? = 2.32 ? 0.37stat. When including constraints from the spectra of 1ES?1101-232 and 1ES?0229+200, the spectrum of 1ES?1218+304 is likely to be harder than ? = 1.86 ? 0.37stat.