Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. Kazarina is active.

Publication


Featured researches published by Y. Kazarina.


Physics Letters B | 2016

A comparison of the cosmic-ray energy scales of Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES

W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; P. Bezyazeekov; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; N. M. Budnev; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; O. Fedorov; B. Fuchs; H. Gemmeke; O. Gress; C. Grupen; A. Haungs; D. Heck; R. Hiller; J.R. Hörandel; A. Horneffer; D. Huber

Abstract The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100 PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10 % – limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level.


arXiv: Instrumentation and Methods for Astrophysics | 2013

Tunka-Rex: A radio antenna array for the Tunka experiment

F.G. Schröder; D. Besson; N. M. Budnev; O. Gress; A. Haungs; R. Hiller; Y. Kazarina; M. Kleifges; A. Konstantinov; E. E. Korosteleva; D. Kostunin; O. Krömer; L. Kuzmichev; R. R. Mirgazov; A. Pankov; V. Prosin; G. Rubtsov; C. Rühle; V. Savinov; J. Stockham; M. Stockham; E. Svetnitsky; R. Wischnewski; A. Zagorodnikov

Tunka-Rex, the Tunka radio extension, is an array of 20 antennas at the Tunka experiment close to Lake Baikal in Siberia. It started operation on 08 October 2012. The antennas are connected directly to the data acquisition of the Tunka main detector, a 1km2 large array of 133 non-imaging photomultipliers observing the Cherenkov light of air showers in dark and clear nights. This allows to cross-calibrate the radio signal with the air-Cherenkov signal of the same air showers - in particular with respect to the energy and the atmospheric depth of the shower maximum, Xmax. Consequently, we can test whether in rural regions with low radio background the practically achievable radio precision comes close to the precision of the established fluorescence and air-Cherenkov techniques. At a mid-term perspective, due to its higher duty-cycle, Tunka-Rex can enhance the effective observing time of Tunka by an order of magnitude, at least in the interesting energy range above 100PeV. Moreover, Tunka-Rex is very cost-e...


arXiv: Instrumentation and Methods for Astrophysics | 2017

Towards a cosmic-ray mass-composition study at Tunka Radio Extension

D. Kostunin; P. Bezyazeekov; N. M. Budnev; O. Fedorov; O. Gress; A. Haungs; R. Hiller; T. Huege; Y. Kazarina; M. Kleifges; E. E. Korosteleva; O. Krömer; V. Kungel; L. Kuzmichev; N. Lubsandorzhiev; R. R. Mirgazov; R. Monkhoev; E. Osipova; A. Pakhorukov; L. Pankov; V. Prosin; G. Rubtsov; F.G. Schröder; R. Wischnewski; A. Zagorodnikov

The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex measures air-showers induced by high-energy cosmic rays, in particular, the lateral distribution of the radio pulses. The depth of the air-shower maximum, statistically depends on the mass of the primary particle, is determined from the slope of the lateral distribution function (LDF). Using a model-independent approach, we have studied possible features of the one-dimensional slope method and tried to find improvements for the reconstruction of primary mass. To study the systematic uncertainties given by different primary particles, we have performed simulations using the CONEX and CoREAS software packages of the recently released CORSIKA v7.5 including the modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations have shown that the largest systematic uncertainty in the energy deposit is due to the unknown primary particle. Finally, we studied the relation between the polarization and the asymmetry of the LDF.


Journal of Physics: Conference Series | 2016

The TAIGA experiment: from cosmic ray to gamma-ray astronomy in the Tunka valley

Nikolay M. Budnev; I. I. Astapov; P. Bezyazeekov; A. G. Bogdanov; V. Boreyko; M Büker; M. Brückner; A. Chiavassa; O. Chvalaev; O. Gress; T. Gress; O. Grishin; A. Dyachok; S. Epimakhov; O. Fedorov; Aleksandr Gafarov; N. Gorbunov; V. Grebenyuk; A. Grinuk; A. Haungs; R. Hiller; D. Horns; T. Huege; A. Ivanova; A Kalinin; N. Karpov; N. N. Kalmykov; Y. Kazarina; N. Kirichkov; S. Kiryuhin

The physical motivations and advantages of the new gamma-observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is presented. The TAIGA array is a complex, hybrid detector for ground-based gamma-ray astronomy for energies from a few TeV to several PeV as well as for cosmic ray studies from 100 TeV to several EeV. The TAIGA will include the wide angle Cherenkov array TAIGA-HiSCORE with ~5 km2 area, a net of 16 I ACT telescopes (with FOV of about 10x10 degree), muon detectors with a total area of up to 2000-3000 m2 and the radio array Tunka-Rex.


Journal of Physics: Conference Series | 2016

The Taiga project

I. I. Yashin; I. I. Astapov; N. S. Barbashina; A. G. Bogdanov; V. Boreyko; N. M. Budnev; M Büker; M. Brückner; A. Chiavassa; O. Chvalaev; A. V. Gafarov; N. Gorbunov; V. Grebenyuk; O. Gress; A. Grinyuk; O. G. Grishin; A. Dyachok; S. Epimakhov; T Eremin; D. Horns; A. Ivanova; N. N. Kalmykov; N. I. Karpov; Y. Kazarina; V. V. Kindin; N. Kirichkov; S. Kiryuhin; R P Kokouli; K. G. Kompaniets; E.N. Konstantinov

The TAIGA project is aimed at solving the fundamental problems of gamma-ray astronomy and physics of ultrahigh energy cosmic rays with the help of the complex of detectors, located in the Tunka valley (Siberia, Russia). TAIGA includes a wide-angle large area Tunka-HiSCORE array, designed to detect gamma-rays of ultrahigh energies in the range 20 - 1000 TeV and charged cosmic rays with energies of 100 TeV - 100 PeV, large area muon detector to improve the rejection of background EAS protons and nuclei and a network of imaging atmospheric Cherenkov telescopes for gamma radiation detection. We discuss the goals and objectives of the complex features of each detector and the results obtained in the first stage of the HiSCORE installation.


Journal of Physics: Conference Series | 2015

Towards gamma-ray astronomy with timing arrays

M. Tluczykont; I. I. Astapov; N. S. Barbashina; S.F. Beregnev; A. G. Bogdanov; D Bogorodskii; V. Boreyko; M. Brückner; N. M. Budnev; A. Chiavassa; O. Chvalaev; A. Dyachok; S. Epimakhov; T Eremin; Aleksandr Gafarov; N. Gorbunov; V. Grebenyuk; O. Gress; T. Gress; A. Grinyuk; O. Grishin; D. Horns; A. Ivanova; N. Karpov; N. N. Kalmykov; Y. Kazarina; V. V. Kindin; N. Kirichkov; S. Kiryuhin; R. P. Kokoulin

The gamma-ray energy regime beyond 10 TeV is crucial for the search for the most energetic Galactic accelerators. The energy spectra of most known gamma-ray emitters only reach up to few 10s of TeV, with 80 TeV from the Crab Nebula being the highest energy so far observed significantly. Uncovering their spectral shape up to few 100 TeV could answer the question whether some of these objects are cosmic ray Pevatrons, i.e. Galactic PeV accelerators.Sensitive observations in this energy range and beyond require very large effective detector areas of several 10s to 100 square-km. While imaging air Cherenkov telescopes have proven to be the instruments of choice in the GeV to TeV energy range, very large area telescope arrays are limited by the number of required readout channels per instrumented square-km (due to the large number of channels per telescope). Alternatively, the shower-front sampling technique allows to instrument large effective areas and also naturally provides large viewing angles of the instrument. Solely measuring the shower front light density and timing (hence timing- arrays), the primary particle properties are reconstructed on the basis of the measured lateral density function and the shower front arrival times. This presentation gives an overview of the technique, its goals, and future perspective.


Journal of Instrumentation | 2017

TAIGA experiment: present status and perspectives

N. M. Budnev; I. I. Astapov; P. Bezyazeekov; V. Boreyko; A. Borodin; M. Brückner; A. Chiavassa; Aleksandr Gafarov; V. Grebenyuk; O. Gress; T. Gress; A. Grinyuk; O. Grishin; A. Dyachok; O. Fedorov; A. Haungs; D. Horns; T. Huege; A. Ivanova; N. N. Kalmykov; Y. Kazarina; V. V. Kindin; S. Kiryuhin; R. P. Kokoulin; K. G. Kompaniets; D. Kostunin; E. E. Korosteleva; V. Kozhin; E. A. Kravchenko; M. Kunnas

The TAIGA observatory addresses ground-based gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV . TAIGA will be located in the Tunka valley, ~ 50 km West from Lake Baikal. The different detectors of the TAIGA will be grouped in 6 arrays to measure Cherenkov and radio emission as well as electron and muon components of atmospheric showers. The combination of the wide angle Cherenkov detectors of the TAIGA-HiSCORE array and the 4-m Imaging Atmospheric Cherenkov Telescopes of the TAIGA-IACT array with their FoV of 10×10 degrees and underground muon detectors offers a very cost effective way to construct a 5 km2 array for gamma-ray astronomy.


Journal of Physics: Conference Series | 2013

Tunka-Rex: a Radio Extension of the Tunka Experiment

F.G. Schröder; D. Besson; N. Budnev; O. Gress; A. Haungs; R. Hiller; Y. Kazarina; M. Kleifges; A. Konstantinov; E. E. Korosteleva; D. Kostunin; O. Krömer; L. Kuzmichev; R. R. Mirgazov; A Pankov; V. Prosin; G. Rubtsov; C. Rühle; V. Savinov; J Stockham; M Stockham; E. Svetnitsky; R. Wischnewski; A. Zagorodnikov

Tunka-Rex, the Tunka radio extension, is an array of about 20 antennas currently under construction, which covers an area of 1 km2. Tunka-Rex measures the radio emission of cosmic-ray air showers above 1016 eV. It is triggered by the photomultipliers of the Tunka-133 experiment which simultaneously measure the Cherenkov light emitted by the same air showers. The radio-Cherenkov-hybrid measurements thus offer a unique opportunity for a cross-calibration of both detection methods. The main goal of Tunka-Rex is to determine the precision of the radio reconstruction for the energy and the atmospheric depth of the shower maximum, Xmax, and thus to experimentally test theoretical predictions that the radio precision can be similar to the precision of air-Cherenkov and fluorescence measurements. At the same time, Tunka-Rex can demonstrate that radio measurements can be performed on a large area for a relatively cheap price, since the antennas will be connected to the already existing Tunka DAQ. Finally, radio-antenna arrays have the perspective to increase the effective observation time compared to air-Cherenkov and fluorescence detectors by an order of magnitude, since radio measurements are possible under almost any atmospheric and light conditions.


Physics of Atomic Nuclei | 2018

TAIGA Gamma Observatory: Status and Prospects

L. A. Kuzmichev; I. I. Astapov; P. Bezyazeekov; V. Boreyko; A. Borodin; Nikolay M. Budnev; R. Wischnewski; A. Garmash; Aleksandr Gafarov; N. Gorbunov; V. Grebenyuk; O. Gress; T. Gress; A. Grinyuk; O. G. Grishin; A. Dyachok; A. Zagorodnikov; V. L. Zurbanov; A. Ivanova; Y. Kazarina; N. N. Kalmykov; N. I. Karpov; V. V. Kindin; P. Kirilenko; S. Kiryuhin; V. Kozhin; R. P. Kokoulin; K. G. Kompaniets; E. E. Korosteleva; E. A. Kravchenko

Over the past few years, the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) observatory has been being deployed in the Tunka Valley, Republic of Buryatia. It is designed for studying gamma rays of energy above 30 TeV and performing searches for sources of galactic cosmic rays with energies in the vicinity of 1 PeV, which is an energy region around the classic knee in the cosmic-ray energy spectrum. The first phase of the observatory will be situated at a distance of about 50 km from Lake Baikal at the site of the Tunka-133 array. The TAIGA gamma observatory will include a network of 500 wide-angle (0.6 sr) Cherenkov detectors (TAIGA-HiSCORE array) and up to 16 atmospheric Cherenkov telescopes (ACT) designed for analyzing the EAS images (imaging atmospheric Cherenkov telescopes, or IACT) and positioned within an area of 5 km2. The observatory will also include muon detectors of total area 2000 m2 distributed over an area of 1 km2. Within the next three years, it is planned to enhance the area of the TAIGA-HiSCORE array by a factor of four—from 0.25 km2 to 1 km2; to supplement the existing IACT with two new ones; and to deploy new muon detectors with a total coverage of 200 m2. The structure of the new observatory is described along with the data analysis techniques used. The most interesting physical results are presented, and the research program for the future is discussed.


arXiv: High Energy Astrophysical Phenomena | 2017

Tunka-Rex: Status, Plans, and Recent Results

F.G. Schröder; P. Bezyazeekov; N. M. Budnev; O. Fedorov; O. Gress; A. Haungs; R. Hiller; T. Huege; Y. Kazarina; M. Kleifges; E. E. Korosteleva; D. Kostunin; O. Krömer; V. Kungel; L. Kuzmichev; N. Lubsandorzhiev; R. R. Mirgazov; R. Monkhoev; E. Osipova; A. Pakhorukov; L. Pankov; V. Prosin; G. Rubtsov; R. Wischnewski; A. Zagorodnikov

Tunka-Rex, the Tunka Radio extension at the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Siberia, has recently been expanded to a total number of 63 SALLA antennas, most of them distributed on an area of one square kilometer. In the first years of operation, Tunka-Rex was solely triggered by the co-located air-Cherenkov array Tunka-133. The correlation of the measurements by both detectors has provided direct experimental proof that radio arrays can measure the position of the shower maximum. The precision achieved so far is 40 g/cm2 , and several methodical improvements are under study. Moreover, the cross-comparison of Tunka-Rex and Tunka-133 shows that the energy reconstruction of Tunka-Rex is precise to 15 %, with a total accuracy of 20 % including the absolute energy scale. By using exactly the same calibration source for Tunka-Rex and LOPES, the energy scale of their host experiments, Tunka-133 and KASCADE-Grande, respectively, can be compared even more accurately with a remaining uncertainty of about 10 %. The main goal of Tunka-Rex for the next years is a study of the cosmic-ray mass composition in the energy range above 100 PeV: For this purpose, Tunka-Rex now is triggered also during daytime by the particle detector array Tunka-Grande featuring surface and underground scintillators for electron and muon detection.

Collaboration


Dive into the Y. Kazarina's collaboration.

Top Co-Authors

Avatar

O. Gress

Irkutsk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Bezyazeekov

Irkutsk State University

View shared research outputs
Top Co-Authors

Avatar

N. M. Budnev

Irkutsk State University

View shared research outputs
Top Co-Authors

Avatar

A. Haungs

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

O. Fedorov

Irkutsk State University

View shared research outputs
Top Co-Authors

Avatar

A. Dyachok

Irkutsk State University

View shared research outputs
Top Co-Authors

Avatar

I. I. Astapov

National Research Nuclear University MEPhI

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Gress

Irkutsk State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge