Y. Mairesse
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Y. Mairesse.
Nature | 2009
Olga Smirnova; Y. Mairesse; S. Patchkovskii; Nirit Dudovich; D. M. Villeneuve; P. B. Corkum; Misha Ivanov
High harmonic emission occurs when an electron, liberated from a molecule by an incident intense laser field, gains energy from the field and recombines with the parent molecular ion. The emission provides a snapshot of the structure and dynamics of the recombining system, encoded in the amplitudes, phases and polarization of the harmonic light. Here we show with CO2 molecules that high harmonic interferometry can retrieve this structural and dynamic information: by measuring the phases and amplitudes of the harmonic emission, we reveal ‘fingerprints’ of multiple molecular orbitals participating in the process and decode the underlying attosecond multi-electron dynamics, including the dynamics of electron rearrangement upon ionization. These findings establish high harmonic interferometry as an effective approach to resolving multi-electron dynamics with sub-Ångström spatial resolution arising from the de Broglie wavelength of the recombining electron, and attosecond temporal resolution arising from the timescale of the recombination event.
Nature | 2012
D. Shafir; Hadas Soifer; Barry D. Bruner; Michal Dagan; Y. Mairesse; Serguei Patchkovskii; Misha Ivanov; Olga Smirnova; Nirit Dudovich
The tunnelling of a particle through a barrier is one of the most fundamental and ubiquitous quantum processes. When induced by an intense laser field, electron tunnelling from atoms and molecules initiates a broad range of phenomena such as the generation of attosecond pulses, laser-induced electron diffraction and holography. These processes evolve on the attosecond timescale (1 attosecond ≡ 1 as = 10−18 seconds) and are well suited to the investigation of a general issue much debated since the early days of quantum mechanics—the link between the tunnelling of an electron through a barrier and its dynamics outside the barrier. Previous experiments have measured tunnelling rates with attosecond time resolution and tunnelling delay times. Here we study laser-induced tunnelling by using a weak probe field to steer the tunnelled electron in the lateral direction and then monitor the effect on the attosecond light bursts emitted when the liberated electron re-encounters the parent ion. We show that this approach allows us to measure the time at which the electron exits from the tunnelling barrier. We demonstrate the high sensitivity of the measurement by detecting subtle delays in ionization times from two orbitals of a carbon dioxide molecule. Measurement of the tunnelling process is essential for all attosecond experiments where strong-field ionization initiates ultrafast dynamics. Our approach provides a general tool for time-resolving multi-electron rearrangements in atoms and molecules—one of the key challenges in ultrafast science.
Science | 2011
Hans Jakob Wörner; J. B. Bertrand; B. Fabre; J. Higuet; H. Ruf; A. Dubrouil; Serguei Patchkovskii; M. Spanner; Y. Mairesse; Valérie Blanchet; Eric Mevel; E. Constant; P. B. Corkum; D. M. Villeneuve
Coincident vibrational and electronic rearrangements in a photoexcited molecule are tracked in fine detail. Conical intersections play a crucial role in the chemistry of most polyatomic molecules, ranging from the simplest bimolecular reactions to the photostability of DNA. The real-time study of the associated electronic dynamics poses a major challenge to the latest techniques of ultrafast measurement. We show that high-harmonic spectroscopy reveals oscillations in the electronic character that occur in nitrogen dioxide when a photoexcited wave packet crosses a conical intersection. At longer delays, we observe the onset of statistical dissociation dynamics. The present results demonstrate that high-harmonic spectroscopy could become a powerful tool to highlight electronic dynamics occurring along nonadiabatic chemical reaction pathways.
Optics Letters | 2009
Johan Boullet; Yoann Zaouter; Jens Limpert; Stéphane Petit; Y. Mairesse; B. Fabre; Julien Higuet; Eric Mevel; E. Constant; Eric Cormier
We report the first experimental demonstration (to our knowledge) of high-order harmonic generation in rare gases driven by a state-of-the-art high-power Yb-doped-fiber chirped-pulse amplification system. The fiber laser delivers 270 fs pulses in the 30-100 microJ energy range at repetition rates varying from 100 kHz to 1 MHz. A proper focalization allows reaching several 10(13) W/cm2 in a gas jet. We have been able to produce and detect harmonics up to order 31 (33.2 nm) in Ar at a 100 kHz repetition rate. High-order harmonic generation at 1 MHz is also demonstrated in Xe up to harmonic 15. The demonstrated extreme UV (XUV) source will bring ultrashort XUV coincidence experiments from synchrotron facilities to tabletop laboratories.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Olga Smirnova; Serguei Patchkovskii; Y. Mairesse; Nirit Dudovich; Misha Ivanov
Molecular structures, dynamics and chemical properties are determined by shared electrons in valence shells. We show how one can selectively remove a valence electron from either Π vs. Σ or bonding vs. nonbonding orbital by applying an intense infrared laser field to an ensemble of aligned molecules. In molecules, such ionization often induces multielectron dynamics on the attosecond time scale. Ionizing laser field also allows one to record and reconstruct these dynamics with attosecond temporal and sub-Ångstrom spatial resolution. Reconstruction relies on monitoring and controlling high-frequency emission produced when the liberated electron recombines with the valence shell hole created by ionization.
Physical Review Letters | 2010
Hadas Soifer; Pierre Botheron; D. Shafir; A. Diner; Oren Raz; Barry D. Bruner; Y. Mairesse; B. Pons; Nirit Dudovich
We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This Letter shows that high-harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.
Physical Review A | 2011
J. Higuet; H. Ruf; Nicolas Thiré; Raluca Cireasa; E. Constant; Eric Cormier; Dominique Descamps; E. Mével; S. Petit; B. Pons; Y. Mairesse; B. Fabre
We study the Cooper minimum in high-order-harmonic generation from argon atoms by using long wavelength laser pulses. We find that the minimum in high-order-harmonic spectra is systematically shifted with respect to total photoionization cross section measurements. We use a semiclassical theoretical approach based on classical trajectory Monte Carlo and quantum electron scattering methods to model the experiment. Our study reveals that the shift between photoionization and high-order-harmonic emission is due to several effects: the directivity of the recombining electrons and emitted polarization, and the shape of the recolliding electron wave packet.
Physical Review Letters | 2013
H. Ruf; C. Handschin; Raluca Cireasa; Nicolas Thiré; A. Ferré; S. Petit; Dominique Descamps; E. Mével; E. Constant; Valérie Blanchet; B. Fabre; Y. Mairesse
High order harmonic generation from clusters is a controversial topic: conflicting theories exist, with different explanations for similar experimental observations. From an experimental point of view, separating the contributions from monomers and clusters is challenging. By performing a spectrally and spatially resolved study in a controlled mixture of clusters and monomers, we are able to isolate a region of the spectrum where the emission purely originates from clusters. Surprisingly, the emission from clusters is depolarized, which is the signature of statistical inhomogeneous emission from a low-density source. The harmonic response to laser ellipticity shows that this generation is produced by a new recollisional mechanism, which opens the way to future theoretical studies.
Nature Communications | 2015
A. Ferré; Andrey E. Boguslavskiy; Michal Dagan; Valérie Blanchet; B. D. Bruner; F. Burgy; Antoine Camper; Dominique Descamps; B. Fabre; N. Fedorov; J. Gaudin; G. Geoffroy; J. Mikosch; Serguei Patchkovskii; S. Petit; Thierry Ruchon; Hadas Soifer; David Staedter; Iain Wilkinson; Albert Stolow; Nirit Dudovich; Y. Mairesse
High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20–26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected.
New Journal of Physics | 2008
Y. Mairesse; Nirit Dudovich; J. Levesque; M. Yu. Ivanov; P. B. Corkum; D. M. Villeneuve
We study experimentally and theoretically the high harmonic emission from aligned samples of nitrogen and carbon dioxide, in an elliptically polarized laser field. The ellipticity induces a lateral shift of the recombining electron wavepacket in the generation process. We show that this effect, which is well known from high harmonic generation (HHG) in atoms, can be useful to maintain the plane wave approximation in the case of HHG from molecules whose orbitals contain nodal planes. The study of the harmonic signal as a function of molecular alignment also reveals the role of the ellipticity on the recollision angle of the electron wavepacket, which can be used to accurately track the position of resonances in harmonic spectra.