Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. Mellier is active.

Publication


Featured researches published by Y. Mellier.


The Astrophysical Journal | 2009

COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2

O. Ilbert; P. Capak; M. Salvato; H. Aussel; H. J. McCracken; D. B. Sanders; N. Z. Scoville; J. Kartaltepe; S. Arnouts; E. Le Floc'h; Bahram Mobasher; Y. Taniguchi; F. Lamareille; A. Leauthaud; Shunji S. Sasaki; D. Thompson; M. Zamojski; G. Zamorani; S. Bardelli; M. Bolzonella; A. Bongiorno; M. Brusa; Karina Caputi; C. M. Carollo; T. Contini; R. Cook; G. Coppa; O. Cucciati; S. de la Torre; L. de Ravel

We present accurate photometric redshifts in the 2-deg2 COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrow bands covering the UV (GALEX), Visible-NIR (Subaru, CFHT, UKIRT and NOAO) and mid-IR (Spitzer/IRAC). A chi2 template-fitting method (Le Phare) was used and calibrated with large spectroscopic samples from VLT-VIMOS and Keck-DEIMOS. We develop and implement a new method which accounts for the contributions from emission lines (OII, Hbeta, Halpha and Ly) to the spectral energy distributions (SEDs). The treatment of emission lines improves the photo-z accuracy by a factor of 2.5. Comparison of the derived photo-z with 4148 spectroscopic redshifts (i.e. Delta z = zs - zp) indicates a dispersion of sigma_{Delta z/(1+zs)}=0.007 at i<22.5, a factor of 2-6 times more accurate than earlier photo-z in the COSMOS, CFHTLS and COMBO-17 survey fields. At fainter magnitudes i<24 and z<1.25, the accuracy is sigma_{Delta z/(1+zs)}=0.012. The deep NIR and IRAC coverage enables the photo-z to be extended to z~2 albeit with a lower accuracy (sigma_{Delta z/(1+zs)}=0.06 at i~24). The redshift distribution of large magnitude-selected samples is derived and the median redshift is found to range from z=0.66 at 22


Monthly Notices of the Royal Astronomical Society | 2012

CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey

Catherine Heymans; Ludovic Van Waerbeke; Lance Miller; Thomas Erben; Hendrik Hildebrandt; Henk Hoekstra; Thomas D. Kitching; Y. Mellier; Patrick Simon; Christopher Bonnett; Jean Coupon; Liping Fu; Joachim Harnois-Déraps; Michael J. Hudson; Martin Kilbinger; K. Kuijken; Barnaby Rowe; Tim Schrabback; Elisabetta Semboloni; Edo van Uitert; Sanaz Vafaei; Malin Velander

We present the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) that accurately determines a weak gravitational lensing signal from the full 154 deg^2 of deep multicolour data obtained by the CFHT Legacy Survey. Weak gravitational lensing by large-scale structure is widely recognized as one of the most powerful but technically challenging probes of cosmology. We outline the CFHTLenS analysis pipeline, describing how and why every step of the chain from the raw pixel data to the lensing shear and photometric redshift measurement has been revised and improved compared to previous analyses of a subset of the same data. We present a novel method to identify data which contributes a non-negligible contamination to our sample and quantify the required level of calibration for the survey. Through a series of cosmology-insensitive tests we demonstrate the robustness of the resulting cosmic shear signal, presenting a science-ready shear and photometric redshift catalogue for future exploitation.


Monthly Notices of the Royal Astronomical Society | 2006

The Shear Testing Programme ¿ I. Weak lensing analysis of simulated ground-based observations

Catherine Heymans; Ludovic Van Waerbeke; David J. Bacon; Joel Bergé; G. M. Bernstein; Emmanuel Bertin; Sarah Bridle; Michael L. Brown; Douglas Clowe; Haakon Dahle; Thomas Erben; Meghan E. Gray; Marco Hetterscheidt; Henk Hoekstra; P. Hudelot; M. Jarvis; Konrad Kuijken; V. E. Margoniner; Richard Massey; Y. Mellier; Reiko Nakajima; Alexandre Refregier; Jason Rhodes; Tim Schrabback; David Michael Wittman

The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of all weak lensing measurements in preparation for the next generation of wide-field surveys. In this first STEP paper, we present the results of a blind analysis of simulated ground-based observations of relatively simple galaxy morphologies. The most successful methods are shown to achieve percent level accuracy. From the cosmic shear pipelines that have been used to constrain cosmology, we find weak lensing shear measured to an accuracy that is within the statistical errors of current weak lensing analyses, with shear measurements accurate to better than 7 per cent. The dominant source of measurement error is shown to arise from calibration uncertainties where the measured shear is over or underestimated by a constant multiplicative factor. This is of concern as calibration errors cannot be detected through standard diagnostic tests. The measured calibration errors appear to result from stellar contamination, false object detection, the shear measurement method itself, selection bias and/or the use of biased weights. Additive systematics (false detections of shear) resulting from residual point-spread function anisotropy are, in most cases, reduced to below an equivalent shear of 0.001, an order of magnitude below cosmic shear distortions on the scales probed by current surveys. Our results provide a snapshot view of the accuracy of current ground-based weak lensing methods and a benchmark upon which we can improve. To this end we provide descriptions of each method tested and include details of the eight different implementations of the commonly used Kaiser, Squires & Broadhurst method (KSB+) to aid the improvement of future KSB+ analyses.


Annual Review of Astronomy and Astrophysics | 1999

Probing the Universe with Weak Lensing

Y. Mellier

▪ Abstract Gravitational lenses can provide crucial information on the geometry of the Universe, on the cosmological scenario of formation of its structures as well as on the history of its components with look-back time. In this review, I focus on the most recent results obtained during the last five years from the analysis of the weak lensing regime. The potential of weak lensing as a probe of dark matter and the study of the coupling between light and mass on scales of clusters of galaxies, large-scale structures and galaxies is discussed first. Then I present the impact of weak lensing for the study of distant galaxies and of the population of lensed sources as a function of redshift. Finally, I discuss the potential of weak lensing to constrain the cosmological parameters, either from pure geometrical effects observed in peculiar lenses, or from the coupling of weak lensing with the CMB.


Astronomy and Astrophysics | 2008

Very weak lensing in the CFHTLS wide: cosmology from cosmic shear in the linear regime ,

Liping Fu; Elisabetta Semboloni; Henk Hoekstra; Martin Kilbinger; L. van Waerbeke; I. Tereno; Y. Mellier; Catherine Heymans; J. Coupon; K. Benabed; Jonathan Benjamin; E. Bertin; Olivier Doré; Michael J. Hudson; O. Ilbert; R. Maoli; C. Marmo; H. J. McCracken; Brice Ménard

Aims. We present an exploration of weak lensing by large-scale structure in the linear regime, using the third-year (T0003) CFHTLS Wide data release. Our results place tight constraints on the scaling of the amplitude of the matter power spectrum σ8 with the matter density Ωm. Methods. Spanning 57 square degrees to i � = 24.5 over three independent fields, the unprecedented contiguous area of this survey permits high signal-to-noise measurements of two-point shear statistics from 1 arcmin to 4 degrees. Understanding systematic errors in our analysis is vital in interpreting the results. We therefore demonstrate the percent-level accuracy of our method using STEP simulations, an E/B-mode decomposition of the data, and the star-galaxy cross correlation function. We also present a thorough analysis of the galaxy redshift distribution using redshift data from the CFHTLS T0003 Deep fields that probe the same spatial regions as the Wide fields. Results. We find σ8(Ωm/0.25) 0.64 = 0.785 ± 0.043 using the aperture-mass statistic for the full range of angular scales for an assumed flat cosmology, in excellent agreement with WMAP3 constraints. The largest physical scale probed by our analysis is 85 Mpc, assuming a mean redshift of lenses of 0.5 and a ΛCDM cosmology. This allows for the first time to constrain cosmology using only cosmic shear measurements in the linear regime. Using only angular scales θ> 85 arcmin, we find σ8(Ωm/0.25) 0.53 lin = 0.837 ± 0.084, which agree with the results from our full analysis. Combining our results with data from WMAP3, we find Ωm = 0.248 ± 0.019 and σ8 = 0.771 ± 0.029.


Astronomy and Astrophysics | 2012

UltraVISTA: a new ultra-deep near-infrared survey in COSMOS

H. J. McCracken; B. Milvang-Jensen; James Dunlop; Marijn Franx; J. P. U. Fynbo; O. Le Fèvre; J. Holt; Karina Caputi; Y. Goranova; Fernando Buitrago; James P. Emerson; Wolfram Freudling; P. Hudelot; C. López-Sanjuan; F. Magnard; Y. Mellier; P. Møller; Kim K. Nilsson; W. Sutherland; L. Tasca; J. Zabl

In this paper we describe the first data release of the UltraVISTA near-infrared imaging survey of the COSMOS field. We summarise the key goals and design of the survey and provide a detailed description of our data reduction techniques. We provide stacked, sky-subtracted images in YJHK_s and narrow-band filters constructed from data collected during the first year of UltraVISTA observations. Our stacked images reach 5σAB depths in an aperture of 2″ diameter of ~25 in Y and ~24 in JHK_s bands and all have sub-arcsecond seeing. To this 5σ limit, our K_s catalogue contains 216 268 sources. We carry out a series of quality assessment tests on our images and catalogues, comparing our stacks with existing catalogues. The 1σ astrometric rms in both directions for stars selected with 17.0 < K_s(AB) < 19.5 is ~0.08″ in comparison to the publicly-available COSMOS ACS catalogues. Our images are resampled to the same pixel scale and tangent point as the publicly available COSMOS data and so may be easily used to generate multi-colour catalogues using this data. All images and catalogues presented in this paper are publicly available through ESO’s “phase 3” archiving and distribution system and from the UltraVISTA web site.


Monthly Notices of the Royal Astronomical Society | 2013

CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments

Catherine Heymans; Emma Grocutt; Alan Heavens; Martin Kilbinger; Thomas D. Kitching; Fergus Simpson; Jonathan Benjamin; Thomas Erben; Hendrik Hildebrandt; Henk Hoekstra; Y. Mellier; Lance Miller; Ludovic Van Waerbeke; Michael L. Brown; Jean Coupon; Liping Fu; Joachim Harnois-Déraps; Michael J. Hudson; Konrad Kuijken; Barnaby Rowe; Tim Schrabback; Elisabetta Semboloni; Sanaz Vafaei; Malin Velander

We present a finely-binned tomographic weak lensing analysis of the Canada-FranceHawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm = 0:70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1:5 < < 35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from BOSS, and a prior on the Hubble constant from the HST distance ladder. This leads to constraints on the normalisation of the matter power spectrum 8 = 0:799 0:015 and the matter density parameter m = 0:271 0:010 for a flat CDM cosmology. For a flat wCDM cosmology we constrain the dark energy equation of state parameter w = 1:02 0:09. We also provide constraints for curved CDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.


Monthly Notices of the Royal Astronomical Society | 2007

The shear testing programme 2 : factors affecting high-precision weak-lensing analyses.

Richard Massey; Catherine Heymans; Joel Bergé; G. M. Bernstein; Sarah Bridle; Douglas Clowe; H. Dahle; Richard S. Ellis; Thomas Erben; Marco Hetterscheidt; F. William High; Christopher M. Hirata; Henk Hoekstra; P. Hudelot; M. Jarvis; David E. Johnston; Konrad Kuijken; V. E. Margoniner; Rachel Mandelbaum; Y. Mellier; Reiko Nakajima; Stephane Paulin-Henriksson; Molly S. Peeples; Chris Roat; Alexandre Refregier; Jason Rhodes; Tim Schrabback; Mischa Schirmer; Uros Seljak; Elisabetta Semboloni

The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of weak-lensing measurement, in preparation for the next generation of wide-field surveys. We review 16 current and emerging shear-measurement methods in a common language, and assess their performance by running them (blindly) on simulated images that contain a known shear signal. We determine the common features of algorithms that most successfully recover the input parameters. A desirable goal would be the combination of their best elements into one ultimate shear-measurement method. In this analysis, we achieve previously unattained discriminatory precision via a combination of more extensive simulations and pairs of galaxy images that have been rotated with respect to each other. That removes the otherwise overwhelming noise from their intrinsic ellipticities. Finally, the robustness of our simulation approach is confirmed by testing the relative calibration of methods on real data. Weak-lensing measurements have improved since the first STEP paper. Several methods now consistently achieve better than 2 per cent precision, and are still being developed. However, we can now distinguish all methods from perfect performance. Our main concern continues to be the potential for a multiplicative shear calibration bias: not least because this cannot be internally calibrated with real data. We determine which galaxy populations are responsible for bias and, by adjusting the simulated observing conditions, we also investigate the effects of instrumental and atmospheric parameters. The simulated point spread functions are not allowed to vary spatially, to avoid additional confusion from interpolation errors. We have isolated several previously unrecognized aspects of galaxy shape measurement, in which focused development could provide further progress towards the sub-per cent level of precision desired for future surveys. These areas include the suitable treatment of image pixellization and galaxy morphology evolution. Ignoring the former effect affects the measurement of shear in different directions, leading to an overall underestimation of shear and hence the amplitude of the matter power spectrum. Ignoring the second effect could affect the calibration of shear estimators as a function of galaxy redshift, and the evolution of the lensing signal, which will be vital to measure parameters including the dark energy equation of state.


Astronomy and Astrophysics | 2010

Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS

T. Schrabback; Jan Hartlap; B. Joachimi; Martin Kilbinger; Patrick Simon; K. Benabed; Maruša Bradač; T. F. Eifler; Thomas Erben; C. D. Fassnacht; F. William High; Stefan Hilbert; H. Hildebrandt; Henk Hoekstra; K. Kuijken; Phil Marshall; Y. Mellier; E. Morganson; Peter Schneider; Elisabetta Semboloni; L. van Waerbeke; Malin Velander

We present a comprehensive analysis of weak gravitational lensing by large-scale structure in the Hubble Space Telescope Cosmic Evolution Survey (COSMOS), in which we combine space-based galaxy shape measurements with ground-based photometric redshifts to study the redshift dependence of the lensing signal and constrain cosmological parameters. After applying our weak lensing-optimized data reduction, principal-component interpolation for the spatially, and temporally varying ACS point-spread function, and improved modelling of charge-transfer inefficiency, we measured a lensing signal that is consistent with pure gravitational modes and no significant shape systematics. We carefully estimated the statistical uncertainty from simulated COSMOS-like fields obtained from ray-tracing through the Millennium Simulation, including the full non-Gaussian sampling variance. We tested our lensing pipeline on simulated space-based data, recalibrated non-linear power spectrum corrections using the ray-tracing analysis, employed photometric redshift information to reduce potential contamination by intrinsic galaxy alignments, and marginalized over systematic uncertainties. We find that the weak lensing signal scales with redshift as expected from general relativity for a concordance ACDM cosmology, including the full cross-correlations between different redshift bins. Assuming a flat ACDM cosmology, we measure σ 8 (Ω m /0.3) 0.51 = 0.75 ± 0.08 from lensing, in perfect agreement with WMAP-5, yielding joint constraints Ω m = 0.266 +0.025 -0.023 σ 8 = 0.802 +0.028 -0.029 (all 68.3% conf.). Dropping the assumption of flatness and using priors from the HST Key Project and Big-Bang nucleosynthesis only, we find a negative deceleration parameter q 0 at 94.3% confidence from the tomographic lensing analysis, providing independent evidence of the accelerated expansion of the Universe. For a flat ωCDM cosmology and prior ω ∈ [-2, 0], we obtain ω < -0.41 (90% conf.). Our dark energy constraints are still relatively weak solely due to the limited area of COSMOS. However, they provide an important demonstration of the usefulness of tomographic weak lensing measurements from space.


The Astrophysical Journal | 2006

First Cosmic Shear Results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey*

Henk Hoekstra; Y. Mellier; L. van Waerbeke; Elisabetta Semboloni; L. Fu; Michael J. Hudson; Laura C. Parker; I. Tereno; K. Benabed

We present the first measurements of the weak gravitational lensing signal induced by the large-scale mass distribution in the universe from data obtained as part of the ongoing Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). The data used in this analysis are from the Wide Synoptic Survey, which aims to image � 170 deg 2 in five filters. We have analyzed an effective area of � 22 deg 2 (31 pointings) of i 0 data spread over two of the three survey fields. These data are of excellent quality, and the results bode well for the remainder of the survey: we do not detect a significant ‘‘B’’ mode, suggesting that residual systematics are negligible at the current level of accuracy. Assuming a cold dark matter model and marginalizing over the Hubble parameter h 2½ 0:6; 0:8� , the source redshift distribution, and systematics, we constrain � 8, the amplitude of the matter power spectrum. At a fiducial matter density m ¼ 0:3 we find � 8 ¼ 0:85 � 0:06. This estimate is in excellent agreement with previous studies. A combination of our results with those from the Deep component of the CFHTLS enables us to place a constraint on a constant equation of state for the dark energy, based on cosmic shear data alone. We find that w0 < � 0:8 at 68% confidence. Subject headingg cosmology: observations — dark matter — gravitational lensing Online material: color figures

Collaboration


Dive into the Y. Mellier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. J. McCracken

Institut d'Astrophysique de Paris

View shared research outputs
Top Co-Authors

Avatar

V. Le Brun

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge