Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. Takeiri is active.

Publication


Featured researches published by Y. Takeiri.


Physics of Plasmas | 1999

Initial physics achievements of large helical device experiments

O. Motojima; H. Yamada; A. Komori; N. Ohyabu; K. Kawahata; O. Kaneko; S. Masuzaki; A. Ejiri; M. Emoto; H. Funaba; M. Goto; K. Ida; H. Idei; S. Inagaki; N. Inoue; S. Kado; S. Kubo; R. Kumazawa; T. Minami; J. Miyazawa; T. Morisaki; S. Morita; S. Murakami; S. Muto; T. Mutoh; Y. Nagayama; Y. Nakamura; H. Nakanishi; K. Narihara; K. Nishimura

The Large Helical Device (LHD) experiments [O. Motojima, et al., Proceedings, 16th Conference on Fusion Energy, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 3, p. 437] have started this year after a successful eight-year construction and test period of the fully superconducting facility. LHD investigates a variety of physics issues on large scale heliotron plasmas (R=3.9 m, a=0.6 m), which stimulates efforts to explore currentless and disruption-free steady plasmas under an optimized configuration. A magnetic field mapping has demonstrated the nested and healthy structure of magnetic surfaces, which indicates the successful completion of the physical design and the effectiveness of engineering quality control during the fabrication. Heating by 3 MW of neutral beam injection (NBI) has produced plasmas with a fusion triple product of 8×1018 keV m−3 s at a magnetic field of 1.5 T. An electron temperature of 1.5 keV and an ion temperature of 1.4 keV have been achieved. The maximum s...


Nuclear Fusion | 1990

Scalings of energy confinement and density limit in stellarator/heliotron devices

S. Sudo; Y. Takeiri; H. Zushi; F. Sano; K. Itoh; K. Kondo; A. Iiyoshi

The paper presents a study of empirical scaling of energy confinement observed experimentally in stellarator/heliotron devices (Heliotron E, Wendelstein VII-A, L2, Heliotron DR) for plasmas heated by electron cyclotron heating and/or neutral beam injection. The proposed scaling of the gross energy confinement time is: , where P is the absorbed power (MW), n is the line average electron density (1020 m?3), B is the magnetic field strength on the plasma axis (T), a is the average minor radius (m) and R is the major radius (m). The empirical scaling of the density limit obtainable under the optimum condition is proposed to be: . These scalings for helical systems are compared with those in tokamaks. The energy confinement scaling has a similar power dependence as the L-mode scaling of tokamaks. The density limit scaling for helical systems seems to indicate an upper limit of the achievable density similar to that in many tokamaks. From the energy confinement time and the density limit , a beta limit can be derived: , which can be lower than the stability/equilibrium beta limit. Thus, from the viewpoint of designing a machine, the values of B, a and R should be selected with care because the dependence of the confinement time (or n?ET) and of the above beta limit on these values is different.


Plasma Physics and Controlled Fusion | 2001

Configuration flexibility and extended regimes in Large Helical Device

H. Yamada; A. Komori; N. Ohyabu; O. Kaneko; K. Kawahata; K.Y. Watanabe; S. Sakakibara; S. Murakami; K. Ida; R. Sakamoto; Y. Liang; J. Miyazawa; Kenji Tanaka; Y. Narushima; S. Morita; S. Masuzaki; T. Morisaki; N. Ashikawa; L. R. Baylor; W.A. Cooper; M. Emoto; P.W. Fisher; H. Funaba; M. Goto; H. Idei; K. Ikeda; S. Inagaki; N. Inoue; M. Isobe; K. Khlopenkov

Recent experimental results in the Large Helical Device have indicated that a large pressure gradient can be formed beyond the stability criterion for the Mercier (high-n) mode. While the stability against an interchange mode is violated in the inward-shifted configuration due to an enhancement of the magnetic hill, the neoclassical transport and confinement of high-energy particle are, in contrast, improved by this inward shift. Mitigation of the unfavourable effects of MHD instability has led to a significant extension of the operational regime. Achievements of the stored energy of I MJ and the volume-averaged beta of 3% are representative results from this finding. A confinement enhancement factor above the international stellarator scaling ISS95 is also maintained around 1.5 towards a volume-averaged beta, (beta), of 3%. Configuration studies on confinement and MHD characteristics emphasize the superiority of the inward-shifted geometry to other geometries. The emergence of coherent modes appears to be consistent with the linear ideal MHD theory; however, the inward-shifted configuration has reduced heat transport in spite of a larger amplitude of magnetic fluctuation than the outward-shifted configuration. While neoclassical helical ripple transport becomes visible for the outward-shifted configuration in the collisionless regime, the inward-shifted configuration does not show any degradation of confinement deep in the collisionless regime (nu* < 0.1). The distinguished characteristics observed in the inward-shifted configuration help in creating a new perspective of MHD stability and related transport in net current-free plasmas. The first result of the pellet launching at different locations is also reported.


Fusion Science and Technology | 2010

Goal and Achievements of Large Helical Device Project

A. Komori; H. Yamada; S. Imagawa; O. Kaneko; K. Kawahata; K. Mutoh; N. Ohyabu; Y. Takeiri; K. Ida; T. Mito; Y. Nagayama; S. Sakakibara; R. Sakamoto; T. Shimozuma; K.Y. Watanabe; O. Motojima

Abstract The Large Helical Device (LHD) is a heliotron-type device employing large-scale superconducting magnets to enable advanced studies of net-current-free plasmas. The major goal of the LHD experiment is to demonstrate the high performance of helical plasmas in a reactor-relevant plasma regime. Engineering achievements and operational experience greatly contribute to the technological basis for a fusion energy reactor. Thorough exploration for scientific and systematic understanding of the physics in the LHD is an important step to a helical fusion reactor. In the 12 years since the initial operation, the physics database as well as operational experience has been accumulated, and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantages of helical systems in the LHD. The cryogenic system has been operated for 56 000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of neutral beam injection, 3 MW of ion cyclotron resonance frequency, and 2.5 MW of electron cyclotron resonance heating. Highlighted physical achievements are high beta (5.1%), high density (1.2 × 1021 m−3), and steady-state operation (3200 s with 490 kW).


Physics of Plasmas | 2009

Observation of an impurity hole in a plasma with an ion internal transport barrier in the Large Helical Device

K. Ida; M. Yoshinuma; M. Osakabe; K. Nagaoka; M. Yokoyama; H. Funaba; C. Suzuki; Takeshi Ido; A. Shimizu; I. Murakami; N. Tamura; H. Kasahara; Y. Takeiri; K. Ikeda; K. Tsumori; O. Kaneko; S. Morita; M. Goto; K. Tanaka; K. Narihara; T. Minami; I. Yamada

Extremely hollow profiles of impurities (denoted as “impurity hole”) are observed in the plasma with a steep gradient of the ion temperature after the formation of an internal transport barrier (ITB) in the ion temperature transport in the Large Helical Device [A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)]. The radial profile of carbon becomes hollow during the ITB phase and the central carbon density keeps dropping and reaches 0.1%–0.3% of plasma density at the end of the ion ITB phase. The diffusion coefficient and the convective velocity of impurities are evaluated from the time evolution of carbon profiles assuming the diffusion and the convection velocity are constant in time after the formation of the ITB. The transport analysis gives a low diffusion of 0.1–0.2 m2/s and the outward convection velocity of ∼1 m/s at half of the minor radius, which is in contrast to the tendency in tokamak plasmas for the impurity density to increase due to an inward convection and low diffusion in the ITB region. T...


Nuclear Fusion | 2007

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

O. Motojima; H. Yamada; A. Komori; N. Ohyabu; T. Mutoh; O. Kaneko; K. Kawahata; T. Mito; K. Ida; S. Imagawa; Y. Nagayama; T. Shimozuma; K.Y. Watanabe; S. Masuzaki; J. Miyazawa; T. Morisaki; S. Morita; S. Ohdachi; N. Ohno; K. Saito; S. Sakakibara; Y. Takeiri; N. Tamura; K. Toi; M. Tokitani; M. Yokoyama; M. Yoshinuma; K. Ikeda; A. Isayama; K. Ishii

The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5 × 10 20 m -3 , which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high β and long pulse.


Physics of Plasmas | 2003

Formation of electron internal transport barrier and achievement of high ion temperature in Large Helical Device

Y. Takeiri; T. Shimozuma; S. Kubo; S. Morita; M. Osakabe; O. Kaneko; K. Tsumori; Y. Oka; K. Ikeda; K. Nagaoka; N. Ohyabu; K. Ida; M. Yokoyama; J. Miyazawa; M. Goto; K. Narihara; I. Yamada; H. Idei; Y. Yoshimura; N. Ashikawa; M. Emoto; H. Funaba; S. Inagaki; M. Isobe; K. Kawahata; K. Khlopenkov; T. Kobuchi; A. Komori; A. Kostrioukov; R. Kumazawa

An internal transport barrier (ITB) was observed in the electron temperature profile in the Large Helical Device [O. Motojima et al., Phys. Plasmas 6, 1843 (1999)] with a centrally focused intense electron cyclotron resonance microwave heating. Inside the ITB the core electron transport was improved, and a high electron temperature, exceeding 10 keV in a low density, was achieved in a collisionless regime. The formation of the electron-ITB is correlated with the neoclassical electron root with a strong radial electric field determined by the neoclassical ambipolar flux. The direction of the tangentially injected beam-driven current has an influence on the electron-ITB formation. For the counter-injected target plasma, a steeper temperature gradient, than that for the co-injected one, was observed. As for the ion temperature, high-power NBI (neutral beam injection) heating of 9 MW has realized a central ion temperature of 5 keV with neon injection. By introducing neon gas, the NBI absorption power was incr...


Nuclear Fusion | 2010

Spontaneous toroidal rotation driven by the off-diagonal term of momentum and heat transport in the plasma with the ion internal transport barrier in LHD

K. Ida; M. Yoshinuma; K. Nagaoka; M. Osakabe; S. Morita; M. Goto; M. Yokoyama; H. Funaba; S. Murakami; K. Ikeda; Haruhisa Nakano; K. Tsumori; Y. Takeiri; O. Kaneko

A spontaneous rotation in the co-direction is observed in plasmas with an ion internal transport barrier (ITB), where the ion temperature gradient is relatively large (∂Ti/∂r ~ 5 keV m−1 and ) in LHD. Because of the large ion temperature gradients, the magnitude of the spontaneous toroidal flow, , becomes large enough to cancel the toroidal flows driven by tangential injected neutral beams and the net toroidal rotation velocity is almost zero at the outer half of the plasma minor radius even in the plasmas with counter-dominant NB injections. The effect of velocity pinch is excluded even if it exits because of zero rotation velocity. The spontaneous toroidal flow appears in the direction of co-rotation after the formation of the ITB, not during or before the ITB formation. The causality between the change in and ∂Ti/∂r observed in this experiment clearly shows that the spontaneous rotation is driven by the ion temperature gradient as the off-diagonal terms of momentum and heat transport.


Nuclear Fusion | 2001

Energy confinement and thermal transport characteristics of net current free plasmas in the Large Helical Device

H. Yamada; K.Y. Watanabe; K. Yamazaki; S. Murakami; S. Sakakibara; K. Narihara; Kenji Tanaka; M. Osakabe; K. Ida; N. Ashikawa; P. de Vries; M. Emoto; H. Funaba; M. Goto; H. Idei; K. Ikeda; S. Inagaki; N. Inoue; M. Isobe; S. Kado; O. Kaneko; K. Kawahata; K. Khlopenkov; T. Kobuchi; A. Komori; S. Kubo; R. Kumazawa; Y. Liang; S. Masuzaki; T. Minami

The energy confinement and thermal transport characteristics of net current free plasmas in regimes with much smaller gyroradii and collisionality than previously studied have been investigated in the Large Helical Device (LHD). The inward shifted configuration, which is superior from the point of view of neoclassical transport theory, has revealed a systematic confinement improvement over the standard configuration. Energy confinement times are improved over the International Stellarator Scaling 95 by a factor of 1.6 ± 0.2 for an inward shifted configuration. This enhancement is primarily due to the broad temperature profile with a high edge value. A simple dimensional analysis involving LHD and other medium sized heliotrons yields a strongly gyro-Bohm dependence (T E Ω ρ *-3.8 ) of energy confinement times. It should be noted that this result is attributed to a comprehensive treatment of LHD for systematic confinement enhancement and that the medium sized heliotrons have narrow temperature profiles. The core stored energy still indicates a dependence of T E Ω ρ *-2.6 when data only from LIED are processed. The local heat transport analysis of discharges dimensionally similar except for ρ * suggests that the heat conduction coefficient lies between Bohm and gyro-Bohm in the core and changes towards strong gyro-Bohm in the peripheral region. Since the inward shifted configuration has a geometrical feature suppressing neoclassical transport, confinement improvement can be maintained in the collisionless regime where ripple transport is important. The stiffness of the pressure profile coincides with enhanced transport in the peaked density profile obtained by pellet injection.


Plasma Physics and Controlled Fusion | 2003

Formation of electron internal transport barriers by highly localized electron cyclotron resonance heating in the large helical device

T. Shimozuma; S. Kubo; H. Idei; Y. Yoshimura; T. Notake; K. Ida; N. Ohyabu; I. Yamada; K. Narihara; S. Inagaki; Y. Nagayama; Y. Takeiri; H. Funaba; S. Muto; Kenji Tanaka; M. Yokoyama; S. Murakami; M. Osakabe; R. Kumazawa; N. Ashikawa; M. Emoto; M. Goto; K. Ikeda; M. Isobe; T Kobichi; Y. Liang; S. Masuzaki; T. Minami; J. Miyazawa; S. Morita

Internal transport barriers with respect to electron thermal transport (eITB) were observed in the large helical device, when the electron cyclotron resonance heating (ECH) power was highly localized on the centre of a plasma sustained by neutral beam injection. The eITB is characterized by a high central electron temperature of 6–8 keV with an extremely steep gradient, as high as 55 keV m−1 and a low electron thermal diffusivity within a normalized average radius ρ≈0.3 as well as by the existence of clear thresholds for the ECH power and plasma collisionality.

Collaboration


Dive into the Y. Takeiri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Osakabe

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

K. Tsumori

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

K. Nagaoka

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Ikeda

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Funaba

Graduate University for Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge