Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. W. Zhang is active.

Publication


Featured researches published by Y. W. Zhang.


Physical Review Letters | 2015

Measurement of the Target-Normal Single-Spin Asymmetry in Quasielastic Scattering from the Reaction (3)He(↑)(e,e').

Y. W. Zhang; Y. Qiang; Y. Zhang; O. Hansen; M. Shabestari; B. Zhao; V. Punjabi; T. Averett; E. Chudakov; V. Sulkosky; J. John; M. Canan; S. Riordan; J. S. Huang; A. Deur; P. King; D. W. Higinbotham; B. Sawatzky; M. K. Jones; E. Jensen; R. De Leo; S. Nanda; P. Markowitz; C. Dutta; W. Korsch; K. Allada; G. Jin; Y. Wang; O. Glamazdin; A. Camsonne

We report the first measurement of the target single-spin asymmetry, A(y), in quasielastic scattering from the inclusive reaction (3)He(↑)(e,e) on a (3)He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A nonzero A(y) can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the substructure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q(2)=0.13, 0.46, and 0.97u2009u2009GeV(2). These measurements demonstrate, for the first time, that the (3)He asymmetry is clearly nonzero and negative at the 4σ-9σ level. Using measured proton-to-(3)He cross-section ratios and the effective polarization approximation, neutron asymmetries of -(1-3)% were obtained. The neutron asymmetry at high Q(2) is related to moments of the generalized parton distributions (GPDs). Our measured neutron asymmetry at Q(2)=0.97u2009u2009GeV(2) agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions.


Physics Letters B | 2015

Precision Measurements of

D. Parno; D. Flay; M. Posik; K. Allada; W. Armstrong; T. Averett; F. Benmokhtar; W. Bertozzi; A. Camsonne; M. Canan; G. D. Cates; Chen Chen; J. P. Chen; Suyong Choi; E. Chudakov; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; X. Deng; A. Deur; C. Dutta; L. El Fassi; G. B. Franklin; M. Friend; H. Gao; F. Garibaldi; S. Gilad; R. Gilman; O. Glamazdin

We have performed precision measurements of the double-spin virtual-photon asymmetry A_1 on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized ^3He target. Our data cover a wide kinematic range 0.277 ≤ x ≤0.548 at an average Q^2 value of 3.078 (GeV/c)^2, doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of an A_1^n zero crossing near x=0.5. We find no evidence of a transition to a positive slope in (Δd+Δd)/(d+d) up to x=0.548x=0.548.


Physical Review Letters | 2015

A_1^n

Y. W. Zhang; E. Long; M. Mihovilovic; G. Jin; K. Allada; B. D. Anderson; J. R. M. Annand; T. Averett; C. Ayerbe-Gayoso; W. Boeglin; P. C. Bradshaw; A. Camsonne; M. Canan; G. D. Cates; C. Chen; J. P. Chen; E. Chudakov; R. De Leo; X. Deng; A. Deur; C. Dutta; L. El Fassi; D. Flay; S. Frullani; F. Garibaldi; H. Gao; S. Gilad; R. Gilman; O. Glamazdin; S. Golge

We report the first measurement of the target single-spin asymmetry, A(y), in quasielastic scattering from the inclusive reaction (3)He(↑)(e,e) on a (3)He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A nonzero A(y) can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the substructure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q(2)=0.13, 0.46, and 0.97u2009u2009GeV(2). These measurements demonstrate, for the first time, that the (3)He asymmetry is clearly nonzero and negative at the 4σ-9σ level. Using measured proton-to-(3)He cross-section ratios and the effective polarization approximation, neutron asymmetries of -(1-3)% were obtained. The neutron asymmetry at high Q(2) is related to moments of the generalized parton distributions (GPDs). Our measured neutron asymmetry at Q(2)=0.97u2009u2009GeV(2) agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions.


Physical Review D | 2016

in the Deep Inelastic Regime

D. Flay; M. Posik; D. Parno; K. Allada; W. Armstrong; T. Averett; F. Benmokhtar; W. Bertozzi; A. Camsonne; M. Canan; G. D. Cates; Chen Chen; J. P. Chen; Suyong Choi; E. Chudakov; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; X. Deng; A. Deur; C. Dutta; L. El Fassi; G. B. Franklin; M. Friend; H. Gao; F. Garibaldi; S. Gilad; R. Gilman; O. Glamazdin

We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix element d_2 of the neutron (d^n_2) was conducted. The quantity dn_2 represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the ^3He spin structure functions, g_1 and g_2, after nuclear corrections had been applied to these moments. The structure functions were obtained from a measurement of the unpolarized cross section and of double-spin asymmetries in the scattering of a longitudinally polarized electron beam from a transversely and a longitudinally polarized ^3He target. The measurement kinematics included two average Q^2 bins of 3.2u2009u2009GeV^2 and 4.3u2009u2009GeV^2, and Bjorken-x 0.25≤ x ≤0.90 covering the deep inelastic and resonance regions. We have found that d^n_2 is small and negative for ⟨Q^2⟩=3.2u2009u2009GeV^2, and even smaller for ⟨Q^2⟩=4.3u2009u2009GeV^2, consistent with the results of a lattice QCD calculation. The twist-4 matrix element f^n_2 was extracted by combining our measured d^n_2 with the world data on the first moment in x of g^n_1, Γ^n_1. We found f^n_2 to be roughly an order of magnitude larger than dn2. Utilizing the extracted d^n_2 and f^n_2 data, we separated the Lorentz color force into its electric and magnetic components, F^(y,n)_E and F^(y,n)_B, and found them to be equal and opposite in magnitude, in agreement with the predictions from an instanton model but not with those from QCD sum rules. Furthermore, using the measured double-spin asymmetries, we have extracted the virtual photon-nucleon asymmetry on the neutron A^n_1, the structure function ratio g^n_1/F^n_1, and the quark ratios (Δu+Δu)/(u+u) and (Δd+Δd)/(d+d). These results were found to be consistent with deep-inelastic scattering world data and with the prediction of the constituent quark model but at odds with the perturbative quantum chromodynamics predictions at large x.


Physical Review Letters | 2014

Measurement of the target-normal single-spin asymmetry in quasielastic scattering from the reaction He3↑(e,e')

M. Mihovilovic; G. Jin; E. Long; Y. W. Zhang; K. Allada; B. D. Anderson; J. R. M. Annand; T. Averett; W. Boeglin; P. C. Bradshaw; A. Camsonne; M. Canan; G. D. Cates; Chen Chen; J. P. Chen; E. Chudakov; R. De Leo; X. Deng; A. Deltuva; A. Deur; C. Dutta; L. El Fassi; D. Flay; S. Frullani; F. Garibaldi; H. Gao; S. Gilad; R. Gilman; O. Glamazdin; J. Golak

M. Mihovilovič, ∗ G. Jin, E. Long, Y.-W. Zhang, K. Allada, B. Anderson, J. R. M. Annand, T. Averett, W. Boeglin, P. Bradshaw, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. P. Chen, E. Chudakov, R. De Leo, X. Deng, A. Deltuva, 13 A. Deur, C. Dutta, L. El Fassi, D. Flay, S. Frullani, F. Garibaldi, H. Gao, S. Gilad, R. Gilman, O. Glamazdin, J. Golak, S. Golge, J. Gomez, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, H. Ibrahim, C. W. de Jager, E. Jensen, X. Jiang, M. Jones, H. Kang, J. Katich, H. P. Khanal, A. Kievsky, P. King, W. Korsch, J. LeRose, R. Lindgren, H.-J. Lu, W. Luo, L. E. Marcucci, P. Markowitz, M. Meziane, R. Michaels, B. Moffit, P. Monaghan, N. Muangma, S. Nanda, B. E. Norum, K. Pan, D. Parno, E. Piasetzky, M. Posik, V. Punjabi, A. J. R. Puckett, X. Qian, Y. Qiang, X. Qui, S. Riordan, A. Saha, † P. U. Sauer, B. Sawatzky, R. Schiavilla, 9 B. Schoenrock, M. Shabestari, A. Shahinyan, S. Širca, 1, ‡ R. Skibiński, J. St. John, R. Subedi, V. Sulkosky, W. A. Tobias, W. Tireman, G. M. Urciuoli, M. Viviani, D. Wang, K. Wang, Y. Wang, J. Watson, B. Wojtsekhowski, H. Wita la, Z. Ye, X. Zhan, Y. Zhang, X. Zheng, B. Zhao, and L. Zhu


Chinese Physics C | 2016

Measurements of

Hui-Yin Wu; Sheng-Ying Zhao; Xiao-Dong Wang; Xian-Ming Zhang; Hui-Rong Qi; Wei Zhang; Ke-Yan Wu; Bi-Tao Hu; Y. W. Zhang

Gas electron multiplier(GEM) detector is used in Cosmic Muon Scattering Tomography and neutron imaging in the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and an experiment of discriminating between cosmic muon and x-ray based on rising time is tested. The energy resolution of GEM detector is tested by Fe ray source to prove the GEM detector has a good performance. The analysis of the complete signal-cycles allows to get the rising time and pulse heights. The experiment result indicates that cosmic muon and x-ray can be discriminated with an appropriate rising time threshold.Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold.Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm x 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by Fe-55 ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2018

d_{2}^{n}

Y. W. Zhang; Hui-Yin Wu; Jianrong Zhou; Sheng-Ying Zhao; Bi-Tao Hu

Micro pattern gaseous detectors have been widely used in position measurements of particle detection in the last two decades. In this work a novel method of track identification and reconstruction was developed for fast neutron detection by MPGD, which in most cases requires a strong rejection of the gamma background. Based on this method, an online tracking system can be built in a FPGA-based Daq system to significantly improve both the capability of counting rate and the spatial resolution. This work also offers a potential usage in future hadron experiments such as SoLID spectrometer in Jeffereson Lab.


Chinese Physics C | 2012

and

Y. W. Zhang; X. Qian; Bi-Tao Hu

We report the density measurement through e-^(3)He elastic scattering with a 1.23 GeV electron beam in Jefferson Lab experiment E06-010. The extracted 3He density is (9.26±0.06) amagats and the N_(2)/^(3)He ratio is (1.49±0.08)%. In addition, these results are consistent with the deduced target densities based on pressure broadening measurement.


arXiv: Instrumentation and Detectors | 2018

A_{1}^{n}

Hui-Yin Wu; Jianjin Zhou; He-Run Yang; Jianrong Zhou; Chenggui Lu; Xin Zhao; Bi-Tao Hu; Y. W. Zhang


Chinese Physics B | 2018

: Probing the neutron spin structure

Wei Zhang; Yanchao Shi; Bi-Tao Hu; Y. W. Zhang

Collaboration


Dive into the Y. W. Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Deur

Thomas Jefferson National Accelerator Facility

View shared research outputs
Top Co-Authors

Avatar

C. Dutta

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

E. Chudakov

Thomas Jefferson National Accelerator Facility

View shared research outputs
Top Co-Authors

Avatar

M. Canan

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar

T. Averett

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

A. Camsonne

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar

O. Glamazdin

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. D. Cates

University of Virginia

View shared research outputs
Researchain Logo
Decentralizing Knowledge