Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y Yan is active.

Publication


Featured researches published by Y Yan.


Medical Physics | 2008

Modeling of carbon fiber couch attenuation properties with a commercial treatment planning system

I Mihaylov; P Corry; Y Yan; Vaneerat Ratanatharathorn; Eduardo G. Moros

The purpose of this work is to evaluate the modeling of carbon fiber couch attenuation properties with a commercial treatment planning system (TPS, Pinnacle3, v8.0d). A carbon fiber couch (Brain-Lab) was incorporated into the TPS by automatic contouring of all transverse CT slices. The couch shape and dimensions were set according to the vendor specifications. The couch composition was realized by assigning appropriate densities to the delineated contours. The couch modeling by the TPS was validated by absolute dosimetric measurements. A phantom consisting of several solid water slabs was CT scanned, the CT data set was imported into the TPS, and the carbon fiber couch was auto-contoured. Open (unblocked) field plans for different gantry angles and field sizes were generated. The doses to a point at 3 cm depth, placed at the linac isocenter, were computed. The phantom was irradiated according to the dose calculation setup and doses were measured with an ion chamber. In addition, percent depth dose (PDD) curves were computed as well as measured with radiographic film. The calculated and measured doses, transmissions, and PDDs were cross-compared. Doses for several posterior fields (0 degree, 30 degrees, 50 degrees, 75 degrees, 83 degrees) were calculated for 6 and 18 MV photon beams. For model validation a nominal field size of 10 x 10 cm2 was chosen and 100 MU were delivered for each portal. The largest difference between computed and measured doses for those posterior fields was within 1.7%. A comparison between computed and measured transmissions for the aforementioned fields was performed and the results were found to agree within 1.1%. The differences between computed and measured doses for different field sizes, ranging from 5 x 5 cm2 to 25 x 25 cm2 in 5 cm increments, were within 2%. Measured and computed PDD curves with and without the couch agree from the surface up to 30 cm depth. The PDDs indicate a surface dose increase resulting from the carbon fiber couch field modification. The carbon fiber couch attenuation for individual posterior oblique fields (75 degrees) can be in excess of 8% depending on the beam energy and field size. When the couch is contoured in Pinnacle3 its attenuation properties are modeled to within 1.7% with respect to measurements. These results demonstrate that appropriate contouring together with relevant density information for the contours is sufficient for adequate modeling of carbon fiber supporting devices by modern commercial treatment planning systems.


Radiation Oncology | 2006

Dosimetric comparison of Helical Tomotherapy and Gamma Knife Stereotactic Radiosurgery for single brain metastasis

J Penagaricano; Y Yan; Chengyu Shi; Mark E. Linskey; Vaneerat Ratanatharathorn

BackgroundHelical Tomotherapy (HT) integrates linear accelerator and computerized tomography (CT) technology to deliver IMRT. Targets are localized (i.e. outlined as gross tumor volume [GTV] and planning target volume [PTV]) on the planning kVCT study while daily MVCT is used for correction of patients set-up and assessment of inter-fraction anatomy changes. Based on dosimetric comparisons, this study aims to find dosimetric equivalency between single fraction HT and Gamma Knife® stereotactic radiosurgery (GKSRS) for the treatment of single brain metastasis.MethodsThe targeting MRI data set from the GKSRS were used for tomotherapy planning. Five patients with single brain metastasis treated with GKSRS were re-planned in the HT planning station using the same prescribed doses. There was no expansion of the GTV to create the PTV. Sub-volumes were created within the PTV and prescribed to the maximum dose seen in the GKSRS plans to imitate the hot spot normally seen in GKSRS. The PTV objective was set as a region at risk in HT planning using the same prescribed dose to the PTV periphery as seen in the corresponding GKSRS plan. The tumor volumes ranged from 437–1840 mm3.ResultsConformality indices are inconsistent between HT and GKSRS. HT generally shows larger lower isodose line volumes, has longer treatment time than GKSRS and can treat a much larger lesion than GKSRS. Both HT and GKSRS single fraction dose-volume toxicity may be prohibitive in treating single or multiple lesions depending on the number and the sizes of the lesions.ConclusionBased on the trend for larger lower dose volumes and more constricted higher dose volumes in HT as compared to GKSRS, dosimetric equivalency was not reached between HT and GKSRS.


Journal of Applied Clinical Medical Physics | 2006

Analysis of the sources of uncertainty for EDR2 film-based IMRT quality assurance

Chengyu Shi; Nikos Papanikolaou; Y Yan; X Weng; Hongyu Jiang

In our institution, patient‐specific quality assurance (QA) for intensity‐modulated radiation therapy (IMRT) is usually performed by measuring the dose to a point using an ion chamber and by measuring the dose to a plane using film. In order to perform absolute dose comparison measurements using film, an accurate calibration curve should be used. In this paper, we investigate the film response curve uncertainty factors, including film batch differences, film processor temperature effect, film digitization, and treatment unit. In addition, we reviewed 50 patient‐specific IMRT QA procedures performed in our institution in order to quantify the sources of error in film‐based dosimetry. Our study showed that the EDR2 film dosimetry can be done with less than 3% uncertainty. The EDR2 film response was not affected by the choice of treatment unit provided the nominal energy was the same. This investigation of the different sources of uncertainties in the film calibration procedure can provide a better understanding of the film‐based dosimetry and can improve quality control for IMRT QA. PACS numbers: 87.86.Cd, 87.53.Xd, 87.57.Nk


International Journal of Radiation Oncology Biology Physics | 2010

Evaluation of Spatially Fractionated Radiotherapy (GRID) and Definitive Chemoradiotherapy With Curative Intent for Locally Advanced Squamous Cell Carcinoma of the Head and Neck: Initial Response Rates and Toxicity

J Penagaricano; Eduardo G. Moros; Vaneerat Ratanatharathorn; Y Yan; P Corry

PURPOSE To present results and acute toxicity in 14 patients with bulky (>or=6 cm) tumors from locally advanced squamous cell carcinoma of the head and neck who received spatially fractionated radiotherapy (GRID) therapy to the bulky mass followed by concomitant chemoradiotherapy using simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT). METHODS AND MATERIALS GRID therapy to the GTV was delivered by creating one treatment field with a checkerboard pattern composed of open-closed areas using a multileaf collimator. The GRID prescription was 20 Gy in one fraction. Chemotherapy started the day of GRID therapy and continued throughout the course of SIB-IMRT. The SIB-IMRT prescription was 66, 60, and 54 Gy to the planning target volume (PTV), intermediate-risk PTV, and low-risk PTV, respectively, in 30 fractions. RESULTS With a median follow-up of 19.5 months (range, 2-38 months), the overall control rate of the GRID gross tumor volume was 79% (11 of 14). The most common acute skin and mucosal toxicities were Grade 3 and 2, respectively. CONCLUSION For the treatment of locally advanced neck squamous cell carcinoma of the head and neck, GRID followed by chemotherapy and SIB-IMRT is well tolerated and yields encouraging clinical and pathologic responses, with similar acute toxicity profiles as in patients receiving chemoradiotherapy without GRID.


Technology in Cancer Research & Treatment | 2007

Retrospective Evaluation of Pediatric Cranio-Spinal Axis Irradiation Plans with the Hi-ART Tomotherapy System

J Penagaricano; Y Yan; P Corry; Eduardo G. Moros; Vaneerat Ratanatharathorn

Helical tomotherapy (HT) can be used for the delivery of cranio-spinal axis irradiation (CSAI) without the need for beam matching of conventional linac-based external beam irradiation. The aim of this study is to retrospectively evaluate HT plans used for treatment in nine patients treated with CSAI. Helical tomotherapy cranio-spinal axis irradiation (HT-CSAI) plans were created for each patient. Average length along the cranio-spinal axis of the PTV was 65.6 cm with a range between 53 and 74 cm. Treatment planning optimization and plan evaluation parameters were obtained from the HT planning station for each of the nine patients. PTV coverage by the 95% isodose surface ranged between 98.0 to 100.0% for all nine patients. The clinically acceptable dose variation within the PTV or tolerance range was between 0.7 and 2.5% for all nine patients. Doses to the organs at risk were clinically acceptable. An increasing length along the longitudinal axis of the PTV did not consistently increase the beam-on time indicating that using a larger jaw width had a greater impact on treatment time. With a larger jaw width it is possible to substantially reduce the normalized beam-on treatment time without compromising plan quality and sparing of organs at risk. By using a larger jaw width or lower modulation factor or both, normalized beam-on times were decreased by up to 61% as compared to the other evaluated treatment plans. From the nine cases reported in this study the minimum beam-on time was achieved with a jaw width of 5.0 cm, pitch of 0.287 and a modulation factor of 2.0. Large and long cylindrical volumes can be effectively treated with helical tomotherapy with both clinically acceptable dose distribution and beam-on time.


International Journal of Radiation Oncology Biology Physics | 2012

Personalized Assessment of kV Cone Beam Computed Tomography Doses in Image-guided Radiotherapy of Pediatric Cancer Patients

Yibao Zhang; Y Yan; Ravinder Nath; Shanglian Bao; J Deng

PURPOSE To develop a quantitative method for the estimation of kV cone beam computed tomography (kVCBCT) doses in pediatric patients undergoing image-guided radiotherapy. METHODS AND MATERIALS Forty-two children were retrospectively analyzed in subgroups of different scanned regions: one group in the head-and-neck and the other group in the pelvis. Critical structures in planning CT images were delineated on an Eclipse treatment planning system before being converted into CT phantoms for Monte Carlo simulations. A benchmarked EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions of kVCBCT scans with full-fan high-quality head or half-fan pelvis protocols predefined by the manufacturer. Based on planning CT images and structures exported in DICOM RT format, occipital-frontal circumferences (OFC) were calculated for head-and-neck patients using DICOMan software. Similarly, hip circumferences (HIP) were acquired for the pelvic group. Correlations between mean organ doses and age, weight, OFC, and HIP values were analyzed with SigmaPlot software suite, where regression performances were analyzed with relative dose differences (RDD) and coefficients of determination (R(2)). RESULTS kVCBCT-contributed mean doses to all critical structures decreased monotonically with studied parameters, with a steeper decrease in the pelvis than in the head. Empirical functions have been developed for a dose estimation of the major organs at risk in the head and pelvis, respectively. If evaluated with physical parameters other than age, a mean RDD of up to 7.9% was observed for all the structures in our population of 42 patients. CONCLUSIONS kVCBCT doses are highly correlated with patient size. According to this study, weight can be used as a primary index for dose assessment in both head and pelvis scans, while OFC and HIP may serve as secondary indices for dose estimation in corresponding regions. With the proposed empirical functions, it is possible to perform an individualized quantitative dose assessment of kVCBCT scans.


Medical Physics | 2005

Fast radiographic film calibration procedure for helical tomotherapy intensity modulated radiation therapy dose verification

Y Yan; Nikos Papanikolaou; X Weng; J Penagaricano; Vaneerat Ratanatharathorn

Film dosimetry offers an advantageous in-phantom planar dose verification tool in terms of spatial resolution and ease of handling for quality assurance (QA) of intensity modulated radiation therapy (IMRT) plans. A critical step in the success of such a technique is that the film calibration be appropriately conducted. This paper presents a fast and efficient film calibration method for a helical tomotherapy unit using a single sheet of film. Considering the unique un-flattened cone shaped profile from a helical tomotherapy beam, a custom leaf control file (sinogram) was created, to produce a valley shaped intensity pattern. There are eleven intensity steps in the valley pattern, representing varying dose values from 38to265cGy. This dose range covers the most commonly prescribed doses in fractionated IMRT treatments. An ion chamber in a solid water phantom was used to measure the dose in each of the eleven steps. For daily film calibration the whole procedure, including film exposure, processing, digitization and analysis, can be completed within 15min, making it practical to use this technique routinely. This method is applicable to film calibration on a helical tomotherapy unit and is particularly useful in IMRT planar dose verification due to its efficiency and reproducibility. In this work, we characterized the dose response of the KODAK EDR2 ready-pack film which was used to develop the step valley dose maps and the IMRT QA planar doses. A comparison between the step valley technique and multifilm based calibration showed that both calibration methods agreed with less than 0.4% deviation in the clinically useful dose ranges.


Technology in Cancer Research & Treatment | 2016

Application of Spatially Fractionated Radiation (GRID) to Helical Tomotherapy using a Novel TOMOGRID Template

X Zhang; J Penagaricano; Y Yan; Sunil Sharma; Robert J. Griffin; Matthew Hardee; Eun Young Han; V. Ratanatharathom

Spatially fractionated radiation therapy (GRID) with megavoltage x-ray beam is typically used to treat large and bulky malignant tumors. Currently most of the GRID treatment is performed by using the linear accelerator with either the multileaf collimator or with the commercially available block. A novel method to perform GRID treatments using Helical Tomotherapy (HT) was developed at the Radiation Oncology Department, College of Medicine, the University of Arkansas for Medical Sciences. In this study, we performed a dosimetric comparison of two techniques of GRID therapy: one on linear accelerator with a commercially available GRID block (LINAC-GRID) as planned on the Pinnacle planning station (P-TPS); and helical tomotherapy-based GRID (HT-GRID) technique using a novel virtual TOMOGRID template planned on Tomotherapy treatment planning station (HT-TPS). Three dosimetric parameters: gross target volume (GTV) dose distribution, GTV target dose inhomogeneity, and doses to regions of interest were compared. The comparison results show that HT-GRID dose distributions are comparable to those of LINAC-GRID for GTV coverage. Doses to the majority of organs-at-risk (OAR) are lower in HT-GRID as compared to LINAC-GRID. The maximum dose to the normal tissue is reduced by 120% for HT-GRID as compared to the LINACGRID. This study indicate that HT-GRID can be used to deliver spatially fractionated dose distributions while allowing 3-D optimization of dose to achieve superior sparing of OARs and confinement of high dose to target.


Journal of Applied Clinical Medical Physics | 2015

An accurate algorithm to match imperfectly matched images for lung tumor detection without markers

Timothy Rozario; Sergey Bereg; Y Yan; T Chiu; H Liu; Vasant Kearney; L Jiang; W Mao

In order to locate lung tumors on kV projection images without internal markers, digitally reconstructed radiographs (DRRs) are created and compared with projection images. However, lung tumors always move due to respiration and their locations change on projection images while they are static on DRRs. In addition, global image intensity discrepancies exist between DRRs and projections due to their different image orientations, scattering, and noises. This adversely affects comparison accuracy. A simple but efficient comparison algorithm is reported to match imperfectly matched projection images and DRRs. The kV projection images were matched with different DRRs in two steps. Preprocessing was performed in advance to generate two sets of DRRs. The tumors were removed from the planning 3D CT for a single phase of planning 4D CT images using planning contours of tumors. DRRs of background and DRRs of tumors were generated separately for every projection angle. The first step was to match projection images with DRRs of background signals. This method divided global images into a matrix of small tiles and similarities were evaluated by calculating normalized cross‐correlation (NCC) between corresponding tiles on projections and DRRs. The tile configuration (tile locations) was automatically optimized to keep the tumor within a single projection tile that had a bad matching with the corresponding DRR tile. A pixel‐based linear transformation was determined by linear interpolations of tile transformation results obtained during tile matching. The background DRRs were transformed to the projection image level and subtracted from it. The resulting subtracted image now contained only the tumor. The second step was to register DRRs of tumors to the subtracted image to locate the tumor. This method was successfully applied to kV fluoro images (about 1000 images) acquired on a Vero (BrainLAB) for dynamic tumor tracking on phantom studies. Radiation opaque markers were implanted and used as ground truth for tumor positions. Although other organs and bony structures introduced strong signals superimposed on tumors at some angles, this method accurately located tumors on every projection over 12 gantry angles. The maximum error was less than 2.2 mm, while the total average error was less than 0.9 mm. This algorithm was capable of detecting tumors without markers, despite strong background signals. PACS numbers: 87.57.cj, 87.57.cp87.57.nj, 87.57.np, 87.57.Q‐, 87.59.bf, 87.63.lm


Medical Dosimetry | 2010

DOSIMETRIC COMPARISON OF HELICAL TOMOTHERAPY AND LINAC-IMRT TREATMENT PLANS FOR HEAD AND NECK CANCER PATIENTS

Xin Zhang; J Penagaricano; Eduardo G. Moros; P Corry; Y Yan; Vaneerat Ratanatharathorn

The rapid development and clinical implementation of external beam radiation treatment technologies continues. The existence of various commercially available technologies for intensity-modulated radiation therapy (IMRT) has stimulated interest in exploring the differential potential advantage one may have compared with another. Two such technologies, Hi-Art Helical Tomotherapy (HT) and conventional medical linear accelerator-based IMRT (LIMRT) have been shown to be particularly suitable for the treatment of head and neck cancers. In this study, 23 patients who were diagnosed with stages 3 or 4 head and neck cancers, without evidence of distance metastatic disease, were treated in our clinic. Treatment plans were developed for all patients simultaneously on the HT planning station and on the Pinnacle treatment planning system for step-and-shoot IMRT. Patients were treated only on the HT unit, with the LIMRT plan serving as a backup in case the HT system might not be available. All plans were approved for clinical use by a physician. The prescription was that patients receive at least 95% of the planning target volume (PTV), which is 66 Gy at 2.2 Gy per fraction. Several dosimetric parameters were computed: PTV dose coverage; PTV volume conformity index; the normalized total dose (NTD), where doses were converted to 2 Gy per fraction to organs at risk (OAR); and PTV dose homogeneity. Both planning systems satisfied our clinics PTV prescription requirements. The results suggest that HT plans had, in general, slightly better dosimetric characteristics, especially regarding PTV dose homogeneity and normal tissue sparing. However, for both techniques, doses to OAR were well below the currently accepted normal tissue tolerances. Consequently, factors other than the dosimetric parameters studied here may have to be considered when making a choice between IMRT techniques.

Collaboration


Dive into the Y Yan's collaboration.

Top Co-Authors

Avatar

Vaneerat Ratanatharathorn

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

J Penagaricano

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Eduardo G. Moros

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

P Corry

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

S Jiang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

X Zhang

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuejun Gu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert D. Timmerman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

X Weng

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

B Hrycushko

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge