Y. Yan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Y. Yan.
Analytical Chemistry | 2015
Y. Yan; Jian Sun; Kui Zhang; Houjuan Zhu; Huan Yu; Mingtai Sun; Dejian Huang; Suhua Wang
A novel nanohybrid ratiometric fluorescence probe for on-site and visual determination of nitrogen dioxide (NO2) has been designed. The hybrid probe comprises blue-colored fluorescence carbon nanodots (CDs) and red-colored emission CdTe quantum dots (QDs). Such hybridized probe exhibits dual emission bands centered at 460 and 665 nm, respectively. The blue fluorescence of CDs is insensitive to the analyte, whereas the red emission of QDs is specifically quenched by the analyte, resulting in a distinguishable color change from orange-red to blue upon exposure to NO2. The limit of detection for nitrogen dioxide is estimated to be 19 nM in aqueous solution. More importantly, the nanohybrid probe has been successfully applied in visual detection of gaseous NO2 with a detection limit of 1 ppm, suggesting its potential application for NO2 sensing.
Analytical Chemistry | 2016
Yajiao Zhang; Lingmei Guan; Huan Yu; Y. Yan; Libo Du; Yang Liu; Mingtai Sun; Dejian Huang; Suhua Wang
In this paper, we report a benzothiazole-functionalized cyanine fluorescence probe and demonstrate that it is selectively reactive to bisulfite, an intermediate indicator for oxidative stress. The selective reaction can be monitored by distinct ratiometric fluorescence variation favorable for cell imaging and visualization. The original probe can be regenerated in high yield through the elimination of bisulfite from the product by peroxides such as hydrogen peroxide, accompanied by fluorescence turning on at 590 nm, showing a potential application for the detection of peroxides. We successfully applied this probe for fluorescence imaging of bisulfite in cancer cells (MCF-7) treated with bisulfite and hydrogen peroxide as well as a selective detection limit of 0.34 μM bisulfite in aqueous solution.
Analytical Chemistry | 2014
Mingtai Sun; Huan Yu; Kui Zhang; Yajiao Zhang; Y. Yan; Dejian Huang; Suhua Wang
The development of convenient methods for sulfur dioxide and its derivatives analysis is critically important because SO2 causes worldwide serious environmental problems and human diseases. In this work, we show an unprecedented example of an energy-transfer-based fluorescence nanoprobe for selective and quantitative detection of SO2, through molecular engineering of the fluorescent carbon nanodots by a cyanine dye which have a unique reactivity to bisulfite, achieving a detection limit of 1.8 μM with a linear relationship (R(2) = 0.9987). The specific detection was not interfered with other potential coexisted species. In addition, the probe is demonstrated for the determination of SO2 gas in aqueous solution as well as for visually monitoring of SO2 gas in air. This nanomaterial based probe is easily prepared, fast responding, and thus potentially attractive for extensive application for the determination of SO2 and other similar air pollutants.
Astronomy and Astrophysics | 2005
G. P. Chernov; Y. Yan; Q. J. Fu; Ch.M. Tan
A comparative analysis of two recent solar radio outbursts around 3 GHz with zebra structures and fiber bursts in their dynamical radio spectra is carried out using all available ground-based and satellite data (SOHO, TRACE, RHESSI). The latest theoretical models of the zebra pattern are critically discussed . New data on microwave zebra structures and fiber bursts suggests that they are analogous to similar structures observed at meter wavelengths. It was discovered that in the 2,6-3,8 GHz frequency band more than 34 zebra stripes can appear simultaneously, and some isolated fiber bursts can continuously be transformed into zebra stripes. This fact indicates a single origin for both structures. The zebra pattern was observed when the signs of magnetic reconnections were revealed in images of 195 ˚ lines, and radio sources coincided with positions of some new sources in hard X-rays. All the main properties of the stripes in emission and absorption can be explained if they are associated with interactions between electrostatic plasma waves and whistlers, taking into account the quasi-linear diusion of fast particles with the loss-cone distribution on whistlers. In this model it is possible to obtain realistic values for the magnetic field strength of B … 160G at the plasma level of about 3 GHz. The double plasma resonance model for the zebra pattern based on the known realistic dependences of electron density and magnetic field yields a frequency dependence for the frequency separation between stripes that does not agree with the observations.
Nano Research | 2016
Y. Yan; Huan Yu; Kui Zhang; Mingtai Sun; Yajiao Zhang; Xiangke Wang; Suhua Wang
The present work reports a sensitive and selective fluorescent sensor for the detection of mercury ion, Hg(II), by hybridizing carbon nanodots (C-dots) and gold nanoclusters (Au NCs) through intrinsic interactions of the two components. The C-dots serve as the reference signal and the Au NCs as the reporter. This method employs the specific high affinity metallophilic Hg2+–Au+ interactions which can greatly quench the red fluorescence of Au NCs, while the blue fluorescence of C-dots is stable against Hg(II), leading to distinct ratiometric fluorescence changes when exposed to Hg(II). A limit of detection of 28 nM for Hg(II) in aqueous solution was estimated. Thus we applied the sensor for the detection of Hg(II) in real water samples including tap water, lake water and mineral water samples with good results. We further demonstrated that a visual chemical sensor could be manufactured by immobilizing the nanohybrid probe on a cellulose acetate circular filter paper. The paper-based sensor immediately showed a distinct fluorescence color evolution from pink to blue after exposure to a drop of the Hg(II) solution.
Analytical Chemistry | 2014
Jian Sun; Y. Yan; Mingtai Sun; Huan Yu; Kui Zhang; Dejian Huang; Suhua Wang
Functional quantum dots (QDs) grafted with ferric dithiocarbamate complex layers (QDs-Fe(III)(DTC)3) were fabricated and demonstrated to be selectively reactive to nitric oxide. The dithiocarbamate (DTC) was covalently conjugated to the amine-coated QDs by a condensation reaction of the carboxyl in DTC and the amino polymer in surface of QDs. The weak fluorescence of QDs-Fe(III)(DTC)3 was attributed to the energy transfer between CdSe/ZnS and Fe(III)(DTC)3 complex at the surface of the functionalized quantum dots. Nitric oxide could greatly switch on the fluorescence of QDs-Fe(III)(DTC)3 by displacing the DTC in the Fe(III)(DTC)3 accompanied by reducing Fe(III) to Fe(II), thus shutting off the energy transfer way. The limit of detection for nitric oxide was estimated to be 3.3 μM and the specific detection was not interfered with other reactive oxygen species. Moreover, the probe was demonstrated for the sensing of gaseous nitric oxide, and the visual detection limit was as low as 10 ppm, showing the potential for sensing nitric oxide by the naked eye.
Talanta | 2017
Y. Yan; Kui Zhang; Huan Yu; Houjuan Zhu; Mingtai Sun; Tasawar Hayat; Ahmed Alsaedi; Suhua Wang
Hydrogen sulfide is a toxic and flammable gaseous pollutant often emitted to air as a by-product of water supply, chemical, petroleum and coal industries. It can be transferred into sulfur dioxide in the air under some meteorologic conditions. Herein, we report a novel ratiometric fluorescence method for hydrogen sulfide based on silver nanoclusters and quantum dots. The silver nanoclusters have been self-assemblied onto the surface of silica spheres, which are embedded with red fluorescent quantum dots, to form a dual-emissive nanohybrid. Such dual-emissive nanohybrid has been applied for hydrogen sulfide detection on the basis of the interfacial interaction between silver nanoclusters and sulfide ions. The blue-emission of Ag NCs is specifically prone to hydrogen sulfide due to surface binding and etching, but the red-emission of QDs within the silica nanospheres is inert against hydrogen sulfide. The different response of the two components to hydrogen sulfide results in fluorescence color variation from violet to red when the blue fluorescence is gradually quenched. This nanohybrid has been successfully demonstrated for the application in sensitive and selective detection of hydrogen sulfide in aqueous solution and gaseous state.
ACS Applied Materials & Interfaces | 2015
Y. Yan; Huan Yu; Yajiao Zhang; Kui Zhang; Houjuan Zhu; Tao Yu; Hui Jiang; Suhua Wang
Among various fluorescence nanomaterials, the II-VI semiconductor nanocrystals (usually called quantum dots, QDs) should be very promising in sensing application because of their high quantum yields, capability for surface property manipulation, and unlimited possible chemical reactions. Herein, we present a fluorescence probe for hydrogen sulfide, which was prepared by first encapsulating inorganic cadmium telluride (CdTe) QDs in silica nanospheres, and subsequently engineering the silica surface with functional molecules azidocoumarin-4-acetic acid reactive to hydrogen sulfide. The nanohybrid probe exhibited two fluorescence bands centered at 452 and 657 nm, respectively. The red fluorescence at 657 nm of the nanohybrid probe is stable against H2S, while the blue fluorescence is specifically sensitive to H2S. The probe showed a distinct fluorescence color evolution from light magenta to blue upon exposure to different amounts of H2S, and a detection limit of 7.0 nM was estimated in aqueous solution. We further applied the nanohybrid probe for visual detection of gaseous H2S with a low concentration of 0.5 ppm using glass indicating spots sensors, suggesting its potential application for gaseous H2S sensing. Such an efficient on-site visual determination of gaseous hydrogen sulfide (H2S) is highly demanded in on-site environmental monitoring and protection.
Astronomy and Astrophysics | 2001
M. Karlický; Y. Yan; Q. J. Fu; Shaorong Wang; K. Jiřička; H. Mészárosová; Yumin Liu
The 0.8{7.6 GHz global and detailed radio spectra of the four most intense flares observed in the NOAA 9077 active region (July 10{14, 2000) are presented. The radio bursts of these flares and their sequence reveal features indicative of topological similarities among the flares under study. The drifting pulsation structures were found to be the typical signatures of these flares. Furthermore, many other ne structures such as narrowband drifting lines, drifting harmonic structure with zebra patterns, drifting branches of narrowband dm-spikes, and structures with fast positively and negatively drifting bursts are shown in the context of the whole radio flares. Some of them were observed for the rst time. The relationships among them and the resulting interpretations are summarized. The characteristic periods of the drifting pulsation structures and the magnetic eld in the zebra radio source are determined.
Langmuir | 2015
Huihui Li; Houjuan Zhu; Mingtai Sun; Y. Yan; Kui Zhang; Dejian Huang; Suhua Wang
Herein, we report a novel approach to the rapid visual detection of gaseous sulfur dioxide (SO2) by manipulating the surface chemistry of 3-aminopropyltriethoxysilane (APTS)-modified quantum dots (QDs) using fluorescent coumarin-3-carboxylic acid (CCA) for specific reaction with SO2. The CCA molecules are attached to the surface amino groups of the QDs through electrostatic attraction, thus the fluorescence of CCA is greatly suppressed because of the formation of an ion-pair complex between the ATPS-modified QDs and CCA. Such an interaction is vulnerable to SO2 because SO2 can readily react with surface amino groups to form strong charge-transfer complexes and subsequently release the strongly fluorescent CCA molecules. The mechanism has been carefully verified through a series of control experiments. Upon exposure to different amounts of SO2, the fluorescent color of the nanoparticle-based sensor displays continuously changes from red to blue. Most importantly, the approach owns high selectivity for SO2 and a tolerance of interference, which enables the sensor to detect SO2 in a practical application. Using this fluorescence-based sensing method, we have achieved a visual detection limit of 6 ppb for gaseous SO2.