Ya-Fang Mei
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ya-Fang Mei.
Journal of Virology | 2000
Anna Segerman; Ya-Fang Mei; Göran Wadell
ABSTRACT Hematopoietic cells are attractive targets for gene therapy. However, no satisfactory vectors are currently available. A major problem with the most commonly used adenovirus vectors, based on adenovirus type 2 (Ad2) or Ad5, is their low binding efficiency for hematopoietic cells. In this study we identify two adenovirus serotypes with high affinity for hematopoietic cells. The binding efficiency of prototype serotypes Ad4p, Ad11p, and Ad35p for different committed hematopoietic cell lines representing T cells (Jurkat), B cells (DG75), monocytes (U937-2), myeloblasts (K562), and granulocytes (HL-60) was evaluated and compared to that of Ad5v, the commonly used adenovirus vector, using flow cytometry. In contrast to Ad5v, which bound to less than 10% of the cells in all experiments, Ad11p and Ad35p showed high binding efficiency for all of the different hematopoietic cell lines. Ad4p bound to the lymphocytic cell lines to some extent but less well to the myelomonocytic cell lines. The abilities of the different serotypes to infect, replicate, and form complete infectious particles in the hematopoietic cell lines were also investigated by immunostaining, 35S labeling of viral proteins, and titrations of cell lysates. Ad11p and Ad35p infected the highest proportion of cells, and Ad11p infected all of the cell lines investigated. The Ad11p hexon was expressed equally well in K562 and A549 cells. Jurkat cells also showed high levels of expression of Ad11p hexons, but the production of infectious particles was low. The binding properties of virions were correlated to their ability to infect and be expressed.
Nature Structural & Molecular Biology | 2007
B. David Persson; Dirk M. Reiter; Marko Marttila; Ya-Fang Mei; José M. Casasnovas; Niklas Arnberg; Thilo Stehle
Adenoviruses (Ads) are important human pathogens and valuable gene delivery vehicles. We report here the crystal structure of the species B Ad11 knob complexed with the Ad11-binding region of its receptor CD46. The conformation of bound CD46 differs profoundly from its unbound state, with the bent surface structure straightened into an elongated rod. This mechanism of interaction is likely to be conserved among many pathogens that target CD46 or related molecules.
Journal of Virology | 2006
Dan J. Gustafsson; Anna Segerman; Kristina Lindman; Ya-Fang Mei; Göran Wadell
ABSTRACT The major determinant of adenovirus (Ad) attachment to host cells is the C-terminal knob domain of the trimeric fiber protein. Ad type 11p (Ad11p; species B2) in contrast to Ad7p (species B1) utilizes at least two different cellular attachment receptors, designated sBAR (species B adenovirus receptor) and sB2AR (species B2 adenovirus receptor). CD46 has recently been identified as one of the Ad11p attachment receptors. However, CD46 did not seem to constitute a functional receptor for Ad7p. Although Ad7p shares high knob amino acid identity with Ad11p, Ad7p is deficient in binding to both sB2AR and CD46. To determine what regions of the Ad11p fiber knob are necessary for sB2AR-CD46 interaction, we constructed recombinant fiber knobs (rFK) with Ad11p/Ad7p chimeras and Ad11p sequences having a single amino acid substitution from Ad7p. Binding of the constructs to A549 and CHO-CD46 BC1 isoform-expressing cells was analyzed by flow cytometry. Our results indicate that an Arg279Glu substitution is sufficient to convert the Ad11p receptor-interaction phenotype to that of Ad7p and abolish sB2AR and CD46 interaction. Also a Glu279Arg substitution in Ad7p rFKs increases CD46 binding. Thus, the lateral HI loop of the Ad11p fiber knob seems to be the key determinant for Ad11p sB2AR-CD46 interaction. This result is comparable to another non-coxsackie-adenovirus receptor binding Ad (Ad37p), where substitution of one amino acid abolishes virus-cell interaction. In conjunction with previous results, our findings also strongly suggest that sB2AR is equivalent to CD46.
Human Gene Therapy | 2009
Linda Sandberg; Praveen Papareddy; Jim Silver; Anders Bergh; Ya-Fang Mei
Selective replication-competent adenovirus serotype 5 vectors have been used for prostate cancer therapy. Unfortunately, gene transfer is inefficient because hormone-refractory metastatic prostate cancer cells have minimal coxsackievirus-adenovirus receptor expression. Vectors based on species B adenoviruses are attractive tools for use in human gene therapy because the viruses have low seroprevalence and they have efficient transduction capacity. Most species B adenoviruses use ubiquitously expressed complement-regulatory CD46 protein as a cellular receptor. Here we report the transduction efficacy and oncolytic capacity of a replication-competent Ad11p (RCAd11p) vector in human prostate cancer cells. Green fluorescent protein was efficiently expressed in a dose-dependent manner in PC-3 and DU 145 cells derived from metastasis of prostate cancer to bone and brain, respectively. However, transduction was less effective in LNCaP cells derived from prostate cancer metastasis to lymph nodes. The oncolytic capacity of the RCAd11p vector was 100 times higher in PC-3 cells than in the two other cell lines. The oncolysis was independent of the level of expression of p53 in the cells or on the absence of E1B55k expression in the vector. In vivo experiments revealed significant growth inhibition of PC-3 tumors in the xenograft mouse group treated with RCAd11p vector or Ad11pwt in comparison with the untreated control group. Thus, we have demonstrated that RCAd11p vector intrinsically possesses oncolytic properties, which were active in targeting tumor cells. Consequently, the novel RCAd11p vector has great potential for the treatment of incurable metastatic prostate disease.
Journal of General Virology | 2002
Johan Skog; Ya-Fang Mei; Göran Wadell
Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.
PLOS ONE | 2011
Jim Silver; Ya-Fang Mei
Replication-competent adenovirus type 5 (Ad5) vectors promise to be more efficient gene delivery vehicles than their replication-deficient counterparts, and chimeric Ad5 vectors that are capable of targeting CD46 are more effective than Ad5 vectors with native fibers. Although several strategies have been used to improve gene transduction and oncolysis, either by modifying their tropism or enhancing their replication capacity, some tumor cells are still relatively refractory to infection by chimeric Ad5. The oncolytic effects of the vectors are apparent in certain tumors but not in others. Here, we report the biological and oncolytic profiles of a replication-competent adenovirus 11p vector (RCAd11pGFP) in colon carcinoma cells. CD46 was abundantly expressed in all cells studied; however, the transduction efficiency of RCAd11pGFP varied. RCAd11pGFP efficiently transduced HT-29, HCT-8, and LS174T cells, but it transduced T84 cells, derived from a colon cancer metastasis in the lung, less efficiently. Interestingly, RCAd11p replicated more rapidly in the T84 cells than in HCT-8 and LS174T cells and as rapidly as in HT-29 cells. Cell toxicity and proliferation assays indicated that RCAd11pGFP had the highest cell-killing activities in HT29 and T84 cells, the latter of which also expressed the highest levels of glycoproteins of the carcinoma embryonic antigen (CEA) family. In vivo experiments showed significant growth inhibition of T84 and HT-29 tumors in xenograft mice treated with either RCAd11pGFP or Ad11pwt compared to untreated controls. Thus, RCAd11pGFP has a potent cytotoxic effect on colon carcinoma cells.
Journal of Medicinal Chemistry | 2012
Christopher Öberg; Mårten Strand; Emma K. Andersson; Karin Edlund; Nam Phuong Nguyen Tran; Ya-Fang Mei; Göran Wadell; Mikael Elofsson
2-[2-Benzoylamino)benzoylamino]benzoic acid (1) was previously identified as a potent and nontoxic antiadenoviral compound (Antimicrob. Agents Chemother. 2010, 54, 3871). Here, the potency of 1 was improved over three generations of compounds. We found that the ortho, ortho substituent pattern and the presence of the carboxylic acid of 1 are favorable for this class of compounds and that the direction of the amide bonds (as in 1) is obligatory. Some variability in the N-terminal moiety was tolerated, but benzamides appear to be preferred. The substituents on the middle and C-terminal rings were varied, resulting in two potent inhibitors, 35g and 35j, with EC(50) = 0.6 μM and low cell toxicity.
Virology | 1995
Ya-Fang Mei; Göran Wadell
Two adenovirus isolates from urine, Ad35p (from a bone marrow recipient) and Ad34a (from a hemorrhagic cystitis patient), were compared regarding their fiber gene organization and hemagglutinating capacity. The fiber serves as the ligand between the virus capsid and the host cell receptor. The Ad35p fiber gene encoded a 323-amino-acid protein, and the Ad34a fiber gene a 325 amino acid protein. The two fibers manifested 62.4% overall amino acid sequence homology, the differences predominantly occurring within the knob region where sequence homology was only 49.5%. The knob region of Ad34a was virtually identical to that of Ad11p which also causes hemorrhagic cystitis. Unlike all other known subgenus B adenoviruses, in the Ad35p fiber an asparagine constituted the C-terminus. Although both Ad34a and Ad35p viruses can hemagglutinate monkey erythrocytes, the hemagglutination inhibition test showed them to differ from each other in the epitopes expressed on the fibers.
Virology | 2010
Dan J. Gustafsson; Emma K. Andersson; Yan-Ling Hu; Marko Marttila; Kristina Lindman; Mårten Strand; Li Wang; Ya-Fang Mei
Adenovirus 11 prototype (Ad11p), belonging to species B, uses CD46 as an attachment receptor. CD46, a complement regulatory molecule, is expressed on all human nucleated cells. We show here that Ad11p virions downregulate CD46 on the surface of K562 cells as early as 5min p.i. Specific binding to CD46 by the Ad11p fiber knob was required to mediate downregulation. The complement regulatory factors CD55 and CD59 were also reduced to a significant extent as a consequence of Ad11p binding to K562 cells. In contrast, binding of Ad7p did not result in downregulation of CD46 early in infection. Thus, the presumed interaction between Ad7p and CD46 did not have the same consequences as the Ad11p-CD46 interaction, the latter virus (Ad11p) being a promising gene therapy vector candidate. These findings may lead to a better understanding of the pathogenesis of species B adenovirus infections.
Antimicrobial Agents and Chemotherapy | 2010
Emma K. Andersson; Ma ûrten Strand; Karin Edlund; Kristina Lindman; Per-Anders Enquist; Sara Spjut; Annika Allard; Mikael Elofsson; Ya-Fang Mei; Göran Wadell
ABSTRACT Adenovirus infections are widespread in society and are occasionally associated with severe, but rarely with life-threatening, disease in otherwise healthy individuals. In contrast, adenovirus infections present a real threat to immunocompromised individuals and can result in disseminated and fatal disease. The number of patients undergoing immunosuppressive therapy for solid organ or hematopoietic stem cell transplantation is steadily increasing, as is the number of AIDS patients, and this makes the problem of adenovirus infections even more urgent to solve. There is no formally approved treatment of adenovirus infections today, and existing antiviral agents evaluated for their antiadenoviral effect give inconsistent results. We have developed a whole cell-based assay for high-throughput screening of potential antiadenoviral compounds. The assay is unique in that it is based on a replication-competent adenovirus type 11p green fluorescent protein (GFP)-expressing vector (RCAd11pGFP). This allows measurement of fluorescence changes as a direct result of RCAd11pGFP genome expression. Using this assay, we have screened 9,800 commercially available small organic compounds. Initially, we observed approximately 400 compounds that inhibited adenovirus expression in vitro by ≥80%, but only 24 were later confirmed as dose-dependent inhibitors of adenovirus. One compound in particular, 2-{[2-(benzoylamino)benzoyl]amino}-benzoic acid, turned out to be a potent inhibitor of adenovirus replication.