Ya-Fei Cheng
Hangzhou Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ya-Fei Cheng.
Bioresource Technology | 2017
Zheng-Zhe Zhang; Jia-Jia Xu; Zhi-Jian Shi; Ya-Fei Cheng; Zheng-Quan Ji; Rui Deng; Ren-Cun Jin
The increasing application of engineered nanoparticles (NPs) has posed an emerging challenge to wastewater treatment processes. The short-term impacts of CuNPs, CuONPs, ZnONPs and AgNPs on anaerobic ammonium oxidation (anammox) process were investigated firstly in this study. CuONPs, ZnONPs and AgNPs up to 50mgg-1 suspended solid (SS) did not affect anammox activity, reactive oxygen species (ROS) production or cell membrane integrity. However, 1.25mgg-1SS CuNPs significantly inhibited the anammox activity and the loads that caused 50% inhibition were 4.64±1.24 and 3.27±0.79mgg-1SS for anammox granules and flocs, respectively. 5mgg-1SS CuNPs caused serious accumulation of the toxic intermediate N2H4. Furthermore, CuNPs interacted with extracellular polymeric substances by specifically bonding to tyrosine or tryptophan-containing groups, C-O-C in polysaccharides and -OH in polymeric compounds. Therefore, this study calls for more attention to the risks of NPs to the anammox-based processes.
Journal of Hazardous Materials | 2017
Zheng-Zhe Zhang; Jia-Jia Xu; Zhi-Jian Shi; Ya-Fei Cheng; Zheng-Quan Ji; Rui Deng; Ren-Cun Jin
Previous studies investigating the risk of engineered nanoparticles (NPs) to biological wastewater treatment have primarily tested NPs individually; however, limited data are available on the impact of NPs on the anaerobic ammonium oxidation (anammox) process. In this study, the toxicity of CuNPs on anammox granules was investigated individually and in combination with CuONPs or ZnONPs. Exposure to CuNPs at 5mgg-1 suspended solids (SS) decreased the anammox activity to 47.1±8.5%, increased the lactate dehydrogenase level to 110.5±3.4% and increased the extracellular N2H4 concentration by 16-fold but did not cause oxidative stress. The presence of CuONPs or ZnONPs at 5mgg-1 SS did not significantly aggravate or alleviate the toxicity of the CuNPs; however, the introduction of EDTA or S2- could attenuate the adverse effects of the CuNPs, CuONPs and ZnONPs on the anammox granules. EDTA captured Cu ions, whereas S2- shielded and deactivated Cu ions and passivated CuNPs. Therefore, our results indicated that the toxicity of NPs was dependent on the amount of active metal reaching the anammox cells. Overall, the results of this study have filled knowledge gaps and provided insights into the combined toxicity of NPs on anammox biomass.
Journal of Hazardous Materials | 2015
Zheng-Zhe Zhang; Rui Deng; Ya-Fei Cheng; Yu-Huang Zhou; Xiemuguli Buayi; Xian Zhang; Hui-Zhong Wang; Ren-Cun Jin
In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L(-1)d(-1)) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg(-1)SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.
Journal of Hazardous Materials | 2016
Zheng-Zhe Zhang; Ya-Fei Cheng; Yu-Huang Zhou; Xiemuguli Buayi; Ren-Cun Jin
We investigated the feasibility of using ethylene diamine tetraacetic acid (EDTA) washing followed by Ca(2+) enhancement for the recovery of anammox reactors inhibited by Cu(II). Kinetic experiments and batch activity assays were employed to determine the optimal concentration of EDTA and washing time; and the performance and physiological dynamics were tracked by continuous-flow monitoring to evaluate the long-term effects. The two-step desorption process revealed that the Cu in anammox granules was primarily introduced via adsorption (approximately, 80.5%), and the portion of Cu in the dispersible layer was predominant (accounting for 71.1%). Afterwards, the Cu internalized in the cells (approximately, 14.7%) could diffuse out of the cells and be gradually washed out of the reactor over the next 20 days. The Ca(2+) addition that followed led to an accelerated nitrogen removal rate recovery slope (0.1491 kgN m(-3) d(-2)) and a normal biomass growth rate (0.054 d(-1)). The nitrogen removal rate returned to normal levels within 90 days and gradual improvements in granular characteristics were also achieved. Therefore, this study provides a new insight that externally removing the adsorbed heavy metals followed by internally repairing the metabolic system may represent an optimal restoration strategy for anammox consortium damaged by heavy metals.
Bioresource Technology | 2017
Zheng-Zhe Zhang; Jia-Jia Xu; Zhi-Jian Shi; Yu-Hui Bai; Ya-Fei Cheng; Hai-Yan Hu; Ren-Cun Jin
Given the increasing use of nanoscale zero-valent iron (NZVI) particles for environmental remediation and wastewater treatment, their potential impact on anaerobic ammonium oxidation (anammox) bacteria was investigated in this study using anammox sludge. Batch assays showed that NZVI concentrations up to 200mgL-1 did not affect anammox activity, reactive oxygen species production, and cell membrane integrity. The nitrogen removal efficiency of the continuous-flow reactor fluctuated in the presence of 20 or 50mgL-1 NZVI, but it could return to normal over time, even at 200mgL-1 NZVI. 16S rDNA-based high-throughput sequencing indicated that although the presence of 10, 20, 50, and 200mgL-1 NZVI to some extent affected microbial composition, the anammox bacteria (Candidatus Kuenenia) never lost its dominance. The abundance of gene families that are related to the assimilation and utilization of iron was down-regulated in response to the stress of high-level NZVI.
Bioresource Technology | 2018
Zheng-Zhe Zhang; Ya-Fei Cheng; Lian-Zeng-Ji Xu; Yu-Hui Bai; Ren-Cun Jin
The increasing use of engineered Ag nanoparticles (NPs) in consumer products raises great concerns about their environmental impacts, but their potential impact on anaerobic ammonium oxidation (anammox) bacteria in wastewater treatment remains unclear. In this study, the response of anammox consortia inhabiting in granules to long-term exposure of AgNPs was investigated. The gradually increased stress of AgNPs (1, 10, 50 mg L-1) showed no adverse effects on the nitrogen removal performance and on the relative abundance of Ca. Kuenenia inhabiting in granules. Notably, in response to the escalating burden of AgNPs, anammox consortia tended to secrete more protein but less polysaccharide, and meanwhile increase the relative abundances of Ag+ efflux protein SilA and regulatory protein SilR. Overall, these results suggested that the strong resistance of anammox granules to AgNPs might be mainly attributed to the defense role of extracellular polymeric substances and gene-based regulation of ion transport.
Bioresource Technology | 2018
Zheng-Zhe Zhang; Ya-Fei Cheng; Yu-Hui Bai; Lian-Zeng-Ji Xu; Jia-Jia Xu; Zhi-Jian Shi; Qian-Qian Zhang; Ren-Cun Jin
Magnetic nanoparticles (NPs) have been widely applied in environmental remediation, biomass immobilization and wastewater treatment, but their potential impact on anaerobic ammonium oxidation (anammox) biomass remains unknown. In this study, the short-term and long-term impacts of maghemite NPs (MHNPs) on the flocculent sludge wasted from a high-rate anammox reactor were investigated. Batch assays showed that the presence of MHNPs up to 200 mg L-1 did not affect anammox activity, reactive oxygen species production, or cell membrane integrity. Moreover, long-term addition of 1-200 mg L-1 MHNPs had no adverse effects on reactor performance. Notably, the specific anammox activity, the abundance of hydrazine synthase structural genes and the content of extracellular polymeric substance were increased with elevated MHNP concentrations. Meanwhile, the community structure was shifted to higher abundance of Candidatus Kuenenia indicated by high-throughput sequencing. Therefore, MHNPs could be applied to enhance anammox flocculent sludge due to their favorable biocompatibility.
Science of The Total Environment | 2018
Jia-Jia Xu; Xiao-Ling Zhu; Qian-Qian Zhang; Ya-Fei Cheng; Lian-Zeng-Ji Xu; Ying-Hong Zhu; Zheng-Quan Ji; Ren-Cun Jin
The long-term impacts of MnO2 on performance, sludge characteristics and microbial community of biogranule-based anaerobic ammonium oxidation (anammox) process were evaluated in an up-flow anaerobic sludge blanket reactor. It was found that the total nitrogen removal efficiency of reactor was fluctuated between 90%-93% at 1-200mgL-1 MnO2. Notably, the specific anammox activity was increased to maximum value of 657.3±10.6mgTNg-1VSSd-1 at 50mgL-1 MnO2 and then slightly decreased, but still higher than that achieved at 0-15mgL-1 MnO2, which had similar variation trends to the content of heme c and extracellular polymeric substances in anammox granules. High throughput sequencing indicated that MnO2 could improve the microbial richness and diversity of anammox granules and Candidatus Kuenenia was always the dominant species, and its abundance continued to increase to 21.3% at the end of operational experiment. Therefore, MnO2 could be applied to enhance the anammox process and the optimal influent MnO2 concentration was lower than 50mgL-1 in view of the reactor performance and cost issues.
Bioresource Technology | 2018
Xiao-Yan Jiang; Ya-Fei Cheng; Wei-Qin Zhu; Yu-Hui Bai; Lian-Zeng-Ji Xu; Xue-Qi Wu; Ren-Cun Jin
In this study, the feasibility of application of anaerobic ammonium oxidation (anammox) to teat wastewater containing chromium was assessed. Anammox granule activity decreased with increasing Cr(VI) concentration and pre-exposure time in batch tests, and the 50% inhibition concentration of Cr(VI) on anammox biomass was 296.5 mg L-1. Approximately 93.9% chromium was absorbed by loosely bound-extracellular polymeric substances and tightly bound-extracellular polymeric substances when less than 60 mg L-1 Cr(VI) was added. During long-term operation in up-flow anaerobic sludge blanket reactor, significant inhibitory effects anammox performance were observed for Cr(VI) concentrations up to 2 mg L-1. The nitrogen removal rate (NRR) rapidly decreased to 1.49 ± 0.89 kg N m-3 d-1, whereas the NRR was 11.37 ± 1.30 kg N m-3 d-1 in a control reactor. Compared with initial levels, specific anammox granule activity was 22%. The tolerance of the anammox process to Cr(VI) can be enhanced after a long-term adaptive phase.
Science of The Total Environment | 2019
Jia-Jia Xu; Ya-Fei Cheng; Lian-Zeng-Ji Xu; Ying-Yi Liu; Bing-Qian Zhu; Nian-Si Fan; Bao-Cheng Huang; Ren-Cun Jin
Given the increasing applications of NiO nanoparticles (NPs) in battery products, the potential effects of NiO NPs on anaerobic ammonium oxidation (anammox) systems were studied for the first time. The results showed that the anammox system performance obviously differed under the stresses of different NiO NPs concentrations. After the withdrawal of NiO NPs, the nitrogen removal performance of the anammox reactor returned to nearly that of the initial phase within 35 days. Compared with 0 mg L-1 NiO NPs, the specific anammox activity first increased and then decreased to the minimum value of 116.8 ± 13.8 mg TN g-1 VSS d-1 at 60 mg L-1 NiO NPs. The variations in the heme c contents and extracellular polymeric substance amounts were similar to the variations in the specific anammox activity throughout the whole experiment. Additionally, the relative abundance of the dominant bacteria (Candidatus kuenenia) increased from 20.44% at 60 mg L-1 NiO NPs to 23.14% at the end of the last phase. Thus, the potential effects of NiO NPs on anammox systems should be a cause for great concern.