Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ya-Hui Huang is active.

Publication


Featured researches published by Ya-Hui Huang.


Endocrinology | 2008

Thyroid Hormone Promotes Cell Invasion through Activation of Furin Expression in Human Hepatoma Cell Lines

Ruey-Nan Chen; Ya-Hui Huang; Ya-Chu Lin; Chau-Ting Yeh; Ying Liang; Shen Liang Chen; Kwang-Huei Lin

The objective of this study was to identify genes regulated by thyroid hormone (T(3)) and associated with tumor invasion. The gene encoding furin, as previously identified by cDNA microarray, is known to be up-regulated by T(3) treatment, and stimulated furin production occurs in thyroidectomized rats after administration of T(3). Presently, by using serial deletion of the promoter and EMSAs, the T(3) response element on the furin promoter was localized to the -6317/-6302 region. T(3)-mediated furin up-regulation was cooperative with TGF-beta because T(3) induction increased after Smad3/4 addition. Furthermore, the invasiveness of HepG2-thyroid hormone receptor (TR) cells was significantly increased by T(3) treatment, perhaps due to furin processing of matrix metalloproteinase-2 and -9. In addition, furin up-regulation either by stable overexpression or T(3) and/or TGF-beta induction was evident in severe-combined immune-deficient mice inoculated with HepG2-TRalpha1 cells. The HepG2-furin mice displayed a higher metastasis index and tumor size than HepG2-neo mice. Notably, the increased liver and lung tumor number or size in the hyperthyroid severe-combined immune-deficient mice as well as TGF-beta mice was attributed specifically to furin overexpression in the HepG2-TRalpha1 cells. Furthermore, this study demonstrated that furin overexpression in some types of hepatocellular carcinomas is TR dependent and might play a crucial role in the development of hepatocellular carcinoma. Thus, T(3) regulates furin gene expression via a novel mechanism or in cooperation with TGF-beta to enhance tumor metastasis in vitro and in vivo.


Cancer Research | 2008

Thyroid Hormone Receptors Suppress Pituitary Tumor Transforming Gene 1 Activity in Hepatoma

Ruey-Nan Chen; Ya-Hui Huang; Chau-Ting Yeh; Chen-Hsin Liao; Kwang-Huei Lin

Pituitary tumor transforming gene 1 (PTTG1) is expressed in most tumors. However, whether thyroid hormone (T(3)) and its receptors (TR) regulate PTTG1 in human hepatocellular carcinomas (HCC) remains unclear. Previous cDNA microarrays revealed PTTG1 is down-regulated by T(3)/TR. This study investigated the significance of PTTG1 regulation by T(3) in HCC cells. The PTTG1 mRNA and protein expression were repressed by T(3) in HCC cell lines overexpressing TR. However, after knockdown of TRs expression by RNA interference, PTTG1 repression by T(3) was abolished. Similar results were observed in thyroidectomized rats. To localize the regulatory region in the PTTG1 promoter, serial deletions within the PTTG1 promoter region were constructed. The promoter activity of the PTTG1 gene was repressed (25-51%) by T(3). Additionally, these findings indicate that PTTG1 may be regulated by Sp1. The critical role of the -594 and -520 Sp1 binding sites was confirmed by electrophoretic mobility shift assay. Transfection with Sp1 expression vector enhanced the activity of the PTTG1 promoter fragment reporter. Also, Sp1 was down-regulated in HCC cells and in thyroidectomized rat after T(3) treatment. Additionally, ectopic expression of PTTG1 promotes cell proliferation in Hep3B hepatoma cells. Conversely, knockdown of PTTG1 or Sp1 expression reduced cell proliferation in HepG2 cells. Notably, the expression of PTTG1 and Sp1 was inversely correlated with the expression of TR proteins in HCC. Together, these findings indicate that PTTG1 gene expression is mediated by Sp1 and is indirectly down-regulated by T(3). Finally, overexpression of PTTG1 or SP1 in HCCs is TR-dependent and crucial in the development of HCC.


Digestive and Liver Disease | 2009

A modified TNM-based Japan Integrated Score combined with AFP level may serve as a better staging system for early-stage predominant hepatocellular carcinoma patients

Yi-Hao Yen; Chi-Sin Changchien; J.-H. Wang; Kwong-Ming Kee; Chao Hung Hung; Tsung-Hui Hu; Chuan Mo Lee; Chih-Yun Lin; Chong-Jong Wang; Tai-Yi Chen; Ya-Hui Huang; Sheng-Nan Lu

BACKGROUND Combinations of Child-Pugh classification and Liver Cancer Study Group of Japan/Tumor-Node-Metastasis (LCSGJ/TNM) have been reported as Japan Integrated Staging (JIS). We previously modified the 6th AJCC/TNM to serve as a better staging system than the 5th and 6th AJCC/TNM. AIMS To develop a modified TNM-based JIS to predict the survival of hepatocellular carcinoma (HCC) patients more accurately. METHODS 3764 HCC patients were enrolled from 1986 to 2002 (2882 patients from 1986 to 2000 and 882 patients from 2001 to 2002). We compared the performance of original JIS, modified TNM-based JIS, modified TNM-based JIS combined alpha-fetoprotein (AFP), BCLC, and CLIP. Lower Akaike information criteria (AIC) values indicated better discriminatory abilities. RESULTS AIC value was lowest in CLIP during all periods. However, during 2001-2002, when early-stage HCC patients were predominant, AIC value was lowest when modified TNM-based JIS combined AFP was used. CONCLUSION The CLIP system provided the best prognostic stratification in the present cohort of HCC patients who were mainly at late stages. However, early detection of HCCs has become more common in Taiwan in recent years, which has led to the predominance of early-stage HCC patients. Therefore, modified TNM-based JIS combined AFP may now be the most applicable system in recent years.


Hepatology | 2012

Dickkopf 4 positively regulated by the thyroid hormone receptor suppresses cell invasion in human hepatoma cells.

Chen-Hsin Liao; Chau-Ting Yeh; Ya-Hui Huang; Sheng-Ming Wu; Hsiang-Cheng Chi; Ming-Ming Tsai; Chung-Ying Tsai; Chia-Jung Liao; Yi-Hsin Tseng; Yang-Hsiang Lin; Cheng-Yi Chen; I-Hsiao Chung; Wan-Li Cheng; Wei-Jan Chen; Kwang-Huei Lin

Thyroid hormone (T3) mediates cellular growth, development, and differentiation by binding to the nuclear thyroid hormone receptor (TR). Recent studies suggest that long‐term hypothyroidism is associated with human hepatocellular carcinoma (HCC) independent from other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein, antagonizes the Wnt signal pathway. In this study, we demonstrate that T3 may play a suppressor role by inducing DKK4 expression in HCC cells at both the messenger RNA (mRNA) and protein levels. DKK4 was down‐regulated in 67.5% of HCC cancerous tissues. The decrease in DKK4 levels was accompanied by a concomitant decrease in TR protein levels in the matched cancerous tissues in 31% of tissues compared by immunoblotting with the adjacent noncancerous tissues. Further, TR and DKK4 expression levels were positively correlated in both normal and cancerous specimens by tissue array analysis. In function assays, stable DKK4 transfected into J7 or HepG2 cells decreased cell invasion in vitro. Conversely, knocking down DKK4 restores cell invasiveness. DKK4‐expressing J7 clones showed increased degradation of β‐catenin, but down‐regulation of CD44, cyclin D1, and c‐Jun. To investigate the effect of DKK4 and TR on tumor growth in vivo, we established a xenograft of J7 cells in nude mice. J7‐DKK4 and J7‐TRα1 overexpressing mice, which displayed growth arrest, lower lung colony formation index, and smaller tumor size than in control mice, supporting an inhibitory role of DKK4 in tumor progression. Conclusion: Taken together, these data suggest that the TR/DKK4/Wnt/β‐catenin cascade influences the proliferation and migration of hepatoma cells during the metastasis process and support a tumor suppressor role of the TR. (Hepatology 2012)


Molecular & Cellular Proteomics | 2012

Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics study of a thyroid hormone-regulated secretome in human hepatoma cells

Cheng-Yi Chen; Lang-Ming Chi; Hsiang-Cheng Chi; Ming-Ming Tsai; Chung-Ying Tsai; Yi-Hsin Tseng; Yang-Hsiang Lin; Wei-Jan Chen; Ya-Hui Huang; Kwang-Huei Lin

The thyroid hormone, 3, 3′,5-triiodo-l-thyronine (T3), regulates cell growth, development, differentiation, and metabolism via interactions with thyroid hormone receptors (TRs). However, the secreted proteins that are regulated by T3 are yet to be characterized. In this study, we used the quantitative proteomic approach of stable isotope labeling with amino acids in cell culture coupled with nano-liquid chromatography-tandem MS performed on a LTQ-Orbitrap instrument to identify and characterize the T3-regulated proteins secreted in human hepatocellular carcinoma cell lines overexpressing TRα1 (HepG2-TRα1). In total, 1742 and 1714 proteins were identified and quantified, respectively, in three independent experiments. Among these, 61 up-regulated twofold and 11 down-regulated twofold proteins were identified. Eight proteins displaying increased expression and one with decreased expression in conditioned media were validated using Western blotting. Real-time quantitative RT-PCR further disclosed induction of plasminogen activator inhibitor-1 (PAI-1), a T3 target, in a time-course and dose-dependent manner. Serial deletions of the PAI-1 promoter region and subsequent chromatin immunoprecipitation assays revealed that the thyroid hormone response element on the promoter is localized at positions –327/–312. PAI-1 overexpression enhanced tumor growth and migration in a manner similar to what was seen when T3 induced PAI-1 expression in J7-TRα1 cells, both in vitro and in vivo. An in vitro neutralizing assay further supported a crucial role of secreted PAI-1 in T3/TR-regulated cell migration. To our knowledge, these results demonstrate for the first time that proteins involved in the urokinase plasminogen activator system, including PAI-1, uPAR, and BSSP4, are augmented in the extra- and intracellular space of T3-treated HepG2-TRα1 cells. The T3-regulated secretome generated in the current study may provide an opportunity to establish the mechanisms underlying T3-associated tumor progression and prognosis.


PLOS ONE | 2012

Glyoxalase-I is a novel prognosis factor associated with gastric cancer progression.

Wan-Li Cheng; Ming-Ming Tsai; Chung-Ying Tsai; Ya-Hui Huang; Cheng-Yi Chen; Hsiang Cheng Chi; Yi-Hsin Tseng; Im-Wai Chao; Wei-Chi Lin; Sheng-Ming Wu; Ying Liang; Chia-Jung Liao; Yang-Hsiang Lin; I-Hsiao Chung; Wei-Jan Chen; Paul Y. Lin; Chia-Siu Wang; Kwang-Huei Lin

Glyoxalase I (GLO1), a methylglyoxal detoxification enzyme, is implicated in the progression of human malignancies. The role of GLO1 in gastric cancer development or progression is currently unclear. The expression of GLO1 was determined in primary gastric cancer specimens using quantitative polymerase chain reaction, immunohistochemistry (IHC), and western blotting analyses. GLO1 expression was higher in gastric cancer tissues, compared with that in adjacent noncancerous tissues. Elevated expression of GLO1 was significantly associated with gastric wall invasion, lymph node metastasis, and pathological stage, suggesting a novel role of GLO1 in gastric cancer development and progression. The 5-year survival rate of the lower GLO1 expression groups was significantly greater than that of the higher expression groups (log rank P = 0.0373) in IHC experiments. Over-expression of GLO1 in gastric cancer cell lines increases cell proliferation, migration and invasiveness. Conversely, down-regulation of GLO1 with shRNA led to a marked reduction in the migration and invasion abilities. Our data strongly suggest that high expression of GLO1 in gastric cancer enhances the metastasis ability of tumor cells in vitro and in vivo, and support its efficacy as a potential marker for the detection and prognosis of gastric cancer.


PLOS ONE | 2012

Furin Overexpression Suppresses Tumor Growth and Predicts a Better Postoperative Disease-Free Survival in Hepatocellular Carcinoma

Ya-Hui Huang; Kwang-Huei Lin; Chen-Hsin Liao; Ming-Wei Lai; Yi-Hsin Tseng; Chau-Ting Yeh

Furin is a member of the pro-protein convertase family. It processes several growth regulatory proteins into their active forms, which are critical to tumor progression, metastasis, and angiogenesis. Furin over-expression could occur in liver cancer and a previous study showed that over-expression of furin promoted HepG2 cell invasion in tail vein xenograft models. However, the clinical relevance of furin expression in hepatocellular carcinoma (HCC) remained unknown. Surprisingly, in a postoperative survival analysis for HCC patients, it was found that the tumor/non-tumor (T/N) ratio of furin expression ≥ 3.5 in HCC tissues predicted a better postoperative disease-free survival (DFS) (P = 0.010; log-rank test). Furthermore, subcutaneous xenograft experiments demonstrated a significant suppression effect of tumor growth in the furin-overexpressed xenografts (Huh7-Furin) compared to the mock control. Administration of a synthetic furin inhibitor for inhibition of the pro-protein convertase activity, decanoyl-Arg-Val-Lys-Arg-chloromethylketone (decRVKR-CMK), to the Huh7-Furin xenograft bearing mice restored the repression effect of tumor growth. In contrast, administration of decRVKR-CMK to the mock Huh7 xenograft bearing mice showed no change in growth rate. In conclusion, furin overexpression inhibited HCC tumor growth in a subcutaneous xenograft model and predicted a better postoperative DFS in clinical analysis.


Cellular and Molecular Life Sciences | 2010

Thyroid hormone receptor-mediated regulation of the methionine adenosyltransferase 1 gene is associated with cell invasion in hepatoma cell lines

Sheng-Ming Wu; Ya-Hui Huang; Yi-Hsin Lu; Ling-Fang Chien; Chau-Ting Yeh; Ming-Ming Tsai; Chen-Hsin Liao; Wei-Jan Chen; Chia-Jung Liao; Wan-Li Cheng; Kwang-Huei Lin

The thyroid hormone T3 regulates differentiation, growth, and development. We demonstrated that methionine adenosyltransferase 1A (MAT1A) was positively regulated by T3 identified by cDNA microarray previously. The expression of the MAT1A was upregulated by T3 in hepatoma cell lines overexpressing thyroid hormone receptors (TRs). Additionally, these findings indicate that MAT1A may be regulated by CCAAT/enhancer binding protein (C/EBP). The critical role of the C/EBP binding sites was confirmed by the reporter or chromatin immuno-precipitation (ChIP) assay. In addition, C/EBP was upregulated in hepatoma cells after T3 treatment and ectopic expression of MAT1A inhibited cell migration and invasion in J7 hepatoma cells. Conversely, knockdown of MAT1A expression increased cell migration. Together, these findings suggest that the expression of the MAT1A gene is mediated by C/EBP and is indirectly upregulated by T3. Finally, TR was downregulated in a small subset of hepatocellular carcinoma cells concomitantly reduced the expression of C/EBPα and MAT1A.


Journal of Hepatology | 2015

Repression of microRNA-130b by thyroid hormone enhances cell motility

Yang-Hsiang Lin; Meng-Han Wu; Chia-Jung Liao; Ya-Hui Huang; Hsiang-Cheng Chi; Sheng-Ming Wu; Cheng-Yi Chen; Yi-Hsin Tseng; Chung-Ying Tsai; I-Hsiao Chung; Ming-Ming Tsai; Ching-Ying Chen; Tina P. Lin; Yung-Hsin Yeh; Wei-Jan Chen; Kwang-Huei Lin

BACKGROUND & AIMS Thyroid hormone (T3) and its receptor (TR) are involved in cell growth and cancer progression. Although deregulation of microRNA (miRNA) expression has been detected in many tumor types, the mechanisms underlying functional impairment and specific involvement of miRNAs in tumor metastasis remain unclear. In the current study, we aimed to elucidate the involvement of deregulated miRNA-130b (miR-130b) and its target genes mediated by T3/TR in cancer progression. METHODS Quantitative reverse transcription-PCR, luciferase and chromatin immunoprecipitation assays were performed to identify the miR-130b transcript and the mechanisms implicated in its regulation. The effects of miR-130b on hepatocellular carcinoma (HCC) invasion were further examined in vitro and in vivo. Clinical correlations among miR-130b, TRs and interferon regulatory factor 1 (IRF1) were examined in HCC samples using Spearman correlation analysis. RESULTS Our experiments disclosed negative regulation of miR-130b expression by T3/TR. Overexpression of miR-130b led to marked inhibition of cell migration and invasion, which was mediated via suppression of IRF1. Cell migration ability was promoted by T3, but partially suppressed upon miR-130b overexpression. Furthermore, miR-130b suppressed expression of epithelial-mesenchymal transition (EMT)-related genes, matrix metalloproteinase-9, phosphorylated mammalian target of rapamycin (mTOR), p-ERK1/2, p-AKT and p-signal transducer and activator of transcription (STAT)-3. Notably, miR-130b was downregulated in hepatoma samples and its expression patterns were inversely correlated with those of TRα1 and IRF1. CONCLUSIONS Our data collectively highlight a novel pathway interlinking T3/TR, miR-130b, IRF1, the EMT-related genes, p-mTOR, p-STAT3 and the p-AKT cascade, which regulates the motility and invasion of hepatoma cells.


Cell Death and Disease | 2016

Chemotherapy resistance and metastasis-promoting effects of thyroid hormone in hepatocarcinoma cells are mediated by suppression of FoxO1 and Bim pathway

Hsiang-Cheng Chi; Shen Liang Chen; Yi-Hung Cheng; Tzu-Kang Lin; Chung-Ying Tsai; Ming-Ming Tsai; Yang-Hsiang Lin; Ya-Hui Huang; Kwang-Huei Lin

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and systemic chemotherapy is the major treatment strategy for late-stage HCC patients. Poor prognosis following chemotherapy is the general outcome owing to recurrent resistance. Recent studies have suggested that in addition to cytotoxic effects on tumor cells, chemotherapy can induce an alternative cascade that supports tumor growth and metastasis. In the present investigation, we showed that thyroid hormone (TH), a potent hormone-mediating cellular differentiation and metabolism, acts as an antiapoptosis factor upon challenge of thyroid hormone receptor (TR)-expressing HCC cells with cancer therapy drugs, including cisplatin, doxorubicin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TH/TR signaling promoted chemotherapy resistance through negatively regulating the pro-apoptotic protein, Bim, resulting in doxorubicin-induced metastasis of chemotherapy-resistant HCC cells. Ectopic expression of Bim in hepatoma cells challenged with chemotherapeutic drugs abolished TH/TR-triggered apoptosis resistance and metastasis. Furthermore, Bim expression was directly transactivated by Forkhead box protein O1 (FoxO1), which was negatively regulated by TH/TR. TH/TR suppressed FoxO1 activity through both transcriptional downregulation and nuclear exclusion of FoxO1 triggered by Akt-mediated phosphorylation. Ectopic expression of the constitutively active FoxO1 mutant, FoxO1-AAA, but not FoxO1-wt, diminished the suppressive effect of TH/TR on Bim. Our findings collectively suggest that expression of Bim is mediated by FoxO1 and indirectly downregulated by TH/TR, leading to chemotherapy resistance and doxorubicin-promoted metastasis of hepatoma cells.

Collaboration


Dive into the Ya-Hui Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chau-Ting Yeh

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Ming Tsai

Chang Gung University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge