Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ya-Lin Chiu is active.

Publication


Featured researches published by Ya-Lin Chiu.


Nature | 2005

Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells

Ya-Lin Chiu; Vanessa B. Soros; Jason F. Kreisberg; Kim Stopak; Warner C. Greene

In contrast to activated CD4+ T cells, resting human CD4+ T cells circulating in blood are highly resistant to infection with human immunodeficiency virus (HIV). Whether the inability of HIV to infect these resting CD4+ T cells is due to the lack of a key factor, or alternatively reflects the presence of an efficient mechanism for defence against HIV, is not clear. Here we show that the anti-retroviral deoxycytidine deaminase APOBEC3G strongly protects unstimulated peripheral blood CD4+ T cells against HIV-1 infection. In activated CD4+ T cells, cytoplasmic APOBEC3G resides in an enzymatically inactive, high-molecular-mass (HMM) ribonucleoprotein complex that converts to an enzymatically active low-molecular-mass (LMM) form after treatment with RNase. In contrast, LMM APOBEC3G predominates in unstimulated CD4+ T cells, where HIV-1 replication is blocked and reverse transcription is impaired. Mitogen activation induces the recruitment of LMM APOBEC3G into the HMM complex, and this correlates with a sharp increase in permissivity for HIV infection in these stimulated cells. Notably, when APOBEC3G-specific small interfering RNAs are introduced into unstimulated CD4+ T cells, the early replication block encountered by HIV-1 is greatly relieved. Thus, LMM APOBEC3G functions as a potent post-entry restriction factor for HIV-1 in unstimulated CD4+ T cells. Surprisingly, sequencing of the reverse transcripts slowly formed in unstimulated CD4+ T cells reveals only low levels of dG → dA hypermutation, raising the possibility that the APOBEC3G-restricting activity may not be strictly dependent on deoxycytidine deamination.


Journal of Immunology | 2007

The CD16+ Monocyte Subset Is More Permissive to Infection and Preferentially Harbors HIV-1 In Vivo

Philip Ellery; Emma Tippett; Ya-Lin Chiu; Geza Paukovics; Paul U. Cameron; Ajantha Solomon; Sharon R. Lewin; Paul R. Gorry; Anthony Jaworowski; Warner C. Greene; Secondo Sonza; Suzanne M. Crowe

HIV-1 persists in peripheral blood monocytes in individuals receiving highly active antiretroviral therapy (HAART) with viral suppression, despite these cells being poorly susceptible to infection in vitro. Because very few monocytes harbor HIV-1 in vivo, we considered whether a subset of monocytes might be more permissive to infection. We show that a minor CD16+ monocyte subset preferentially harbors HIV-1 in infected individuals on HAART when compared with the majority of monocytes (CD14highCD16−). We confirmed this by in vitro experiments showing that CD16+ monocytes were more susceptible to CCR5-using strains of HIV-1, a finding that is associated with higher CCR5 expression on these cells. CD16+ monocytes were also more permissive to infection with a vesicular stomatitis virus G protein-pseudotyped reporter strain of HIV-1 than the majority of monocytes, suggesting that they are better able to support HIV-1 replication after entry. Consistent with this observation, high molecular mass complexes of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) were observed in CD16+ monocytes that were similar to those observed in highly permissive T cells. In contrast, CD14highCD16− monocytes contained low molecular mass active APOBEC3G, suggesting this is a mechanism of resistance to HIV-1 infection in these cells. Collectively, these data show that CD16+ monocytes are preferentially susceptible to HIV-1 entry, more permissive for replication, and constitute a continuing source of viral persistence during HAART.


Proceedings of the National Academy of Sciences of the United States of America | 2006

High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition

Ya-Lin Chiu; H. Ewa Witkowska; Steven C. Hall; Mario L. Santiago; Vanessa B. Soros; Cécile Esnault; Thierry Heidmann; Warner C. Greene

APOBEC3G (A3G) and related deoxycytidine deaminases are potent intrinsic antiretroviral factors. A3G is expressed either as an enzymatically active low-molecular-mass (LMM) form or as an enzymatically inactive high-molecular-mass (HMM) ribonucleoprotein complex. Resting CD4 T cells exclusively express LMM A3G, where it functions as a powerful postentry restriction factor for HIV-1. Activation of CD4 T cells promotes the recruitment of LMM A3G into 5- to 15-MDa HMM complexes whose function is unknown. Using tandem affinity purification techniques coupled with MS, we identified Staufen-containing RNA-transporting granules and Ro ribonucleoprotein complexes as specific components of HMM A3G complexes. Analysis of RNAs in these complexes revealed Alu and small Y RNAs, two of the most prominent nonautonomous mobile genetic elements in human cells. These retroelement RNAs are recruited into Staufen-containing RNA-transporting granules in the presence of A3G. Retrotransposition of Alu and hY RNAs depends on the reverse transcriptase machinery provided by long interspersed nucleotide elements 1 (L1). We now show that A3G greatly inhibits L1-dependent retrotransposition of marked Alu retroelements not by inhibiting L1 function but by sequestering Alu RNAs in cytoplasmic HMM A3G complexes away from the nuclear L1 enzymatic machinery. These findings identify nonautonomous Alu and hY retroelements as natural cellular targets of A3G and highlight how different forms of A3G uniquely protect cells from the threats posed by exogenous retroviruses (LMM A3G) and endogenous retroelements (HMM A3G).


Journal of Biological Chemistry | 2006

Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells.

Kim Stopak; Ya-Lin Chiu; Jerry Kropp; Robert M. Grant; Warner C. Greene

Human APOBEC3G (A3G), a deoxycytidine deaminase, is a broadly acting antiretroviral factor expressed in a variety of cells. Mitogen activation of CD4 T cells enhances A3G expression and leads to recruitment of low molecular mass (LMM) A3G, which functions as a post-entry human immunodeficiency virus (HIV) restriction factor, into enzymatically inactive, high molecular mass (HMM) RNA-protein complexes that include Staufen RNA-transporting granules. We now report that interleukin-2 (IL-2), IL-15 and, to a lesser extent, IL-7 enhance the expression of A3G in peripheral blood lymphocytes and that this effect is blocked by inhibitors of the JAK and MAPK signaling pathways. In mixed cultures of CD4+ T cells containing either HMM or LMM A3G, HIV preferentially infected cells containing HMM A3G. A3G shifted into a HMM complex when IL-2, -7, or -15 was added to resting T cells, likely explaining how cytokine treatment renders resting CD4+ T cells permissive to HIV infection. Similarly, poly(I:C)/tumor necrosis factor-α-induced maturation of dendritic cells was associated with a sharp increase in A3G expression; however, this induction led to the accumulation of LMM A3G. Together, these results highlight the distinct inductive effects of select cytokines on A3G gene expression and A3G complex assembly that occur in natural cellular targets of HIV infection.


Philosophical Transactions of the Royal Society B | 2009

APOBEC3G: an intracellular centurion

Ya-Lin Chiu; Warner C. Greene

The intrinsic antiretroviral factor APOBEC3G (A3G) is highly active against HIV-1 and other retroviruses. In different cell types, A3G is expressed in high-molecular-mass (HMM) RNA–protein complexes or low-molecular-mass (LMM) forms displaying different biological activities. In resting CD4 T cells, a LMM form of A3G potently restricts HIV-1 infection soon after virion entry. However, when T cells are activated, LMM A3G is recruited into HMM complexes that include Staufen-containing RNA granules. These complexes are probably nucleated by the induced expression of Alu/hY retroelement RNAs that accompany T-cell activation. HMM A3G sequesters these retroelement RNAs away from the nuclear long interspersed nuclear element-derived enzymes required for Alu/hY retrotransposition. Human immunodeficiency virus (HIV) exploits this ‘window of opportunity’ provided by the loss of LMM A3G in activated CD4 T cells to productively infect these cells. During HIV virion formation, newly synthesized LMM A3G is preferentially encapsidated but only under conditions where Vif is absent and thus not able to target A3G for proteasome-mediated degradation. Together, these findings highlight the discrete functions of the different forms of A3G. LMM A3G opposes the external threat posed by exogenous retroviruses, while HMM A3G complexes oppose the internal threat posed by the retrotransposition of select types of retroelements.


Journal of Biological Chemistry | 2006

APOBEC3 Cytidine Deaminases: Distinct Antiviral Actions along the Retroviral Life Cycle

Ya-Lin Chiu; Warner C. Greene

The field of human immunodeficiency virus (HIV) biology has been galvanized by the discovery of innate APOBEC3 cytidine deaminases, which pose powerful barriers to the replication of HIV and other retroviruses. Rapid progress has been made in defining their action, intriguing regulation within cells, expanded range of retroviral targets, and counterstrikes utilized by retroviruses against them. Although scientifically fascinating, advances in APOBEC3 biology may lead to new antiviral drugs and improved lentiviral vectors for gene therapy.


Nature | 2010

Retraction Note to: Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells

Ya-Lin Chiu; Vanessa B. Soros; Jason F. Kreisberg; Kim Stopak; Warner C. Greene

This corrects the article DOI: 10.1038/nature03493


Retrovirology | 2005

Regulation of Cellular and Virion APOBEC3G (A3G) Complexes

Warner C. Greene; Ya-Lin Chiu; Jason Kreisberg; Kim Stopak; Vanessa B. Soros

A3G is detectable in both high molecular mass (HMM) and low molecular mass (LMM) complexes in different cells. Enzymatically active LMM A3G complexes are present in resting CD4 T-cells and blood derived monocytes. These cells are not permissive for HIV infection because LMM A3G functions as a potent post-entry restriction factor for HIV and possibly other retroviruses (Chiu et al. Nature 435:108–114, 2005). The antiviral activity of LMM A3G is exerted at the level of reverse transcription but does not appear to involve extensive cytidine deamination of nacent minus strand HIV DNA. When T-cells are activated by mitogens or naive T cells enter lymphatic tissues where IL-2 and IL-15 are produced, LMM A3G is recruited into an enzymatically inactive HMM ribonucleoprotein complex. This change in A3G complex size is associated with the acquisition of permissiveness to HIV infection. Interestingly, HIV DVif virions incorporate the HMM form of A3G assembled with HIV genomic RNA. Accordingly, a mechanism for activation of this latent A3G complex must come into play. Recently, we have assembled preliminary evidence supporting a key role for Rnase H in the activation of the latent HMM A3G complex. Thus, Rnase H not only prepares the substrate for mutagenesis, but also activates the enzyme. from 2005 International Meeting of The Institute of Human Virology Baltimore, USA, 29 August – 2 September 2005


Annual Review of Immunology | 2008

THE APOBEC3 CYTIDINE DEAMINASES: AN INNATE DEFENSIVE NETWORK OPPOSING EXOGENOUS RETROVIRUSES AND ENDOGENOUS RETROELEMENTS

Ya-Lin Chiu; Warner C. Greene


Trends in Immunology | 2006

Multifaceted antiviral actions of APOBEC3 cytidine deaminases

Ya-Lin Chiu; Warner C. Greene

Collaboration


Dive into the Ya-Lin Chiu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Stopak

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario L. Santiago

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge