Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ya-Qin Chen is active.

Publication


Featured researches published by Ya-Qin Chen.


Scientific Reports | 2016

Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

Ya-Qin Chen; Zhihong Wu; Shui-ping Zhao; Rong Xiang

Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese.


Journal of Cellular Biochemistry | 2010

RTN3 and RTN4: Candidate modulators in vascular cell apoptosis and atherosclerosis

Ya-Qin Chen; Shui-ping Zhao; Rong Xiang

The vascular cell apoptosis may play an important role in the development of atherosclerosis. Reticulons, the only molecular so far to participate in all three apoptosis signaling pathways, may be a novel player in the progress of AS. We presumes that reticulons may belong to the principle node of apoptosis pathway and be the candidate factor linking apoptosis and AS. J. Cell. Biochem. 111: 797–800, 2010.


Applied Biochemistry and Biotechnology | 2015

Novel Mutations of Low-Density Lipoprotein Receptor Gene in China Patients with Familial Hypercholesterolemia

Liang-Liang Fan; Min-Jie Lin; Ya-Qin Chen; Hao Huang; Dao-quan Peng; Kun Xia; Shui-ping Zhao; Rong Xiang

Familial hypercholesterolaemia (FH) is an autosomal dominant genetic disorder, associated with elevated level of serum low-density lipoprotein-cholesterol (LDL-C), which can lead to premature cardiovascular disease (CVD). Mutations in low density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) have been identified to be the underlying cause of this disease. Genetic research of FH has already been extensively studied all over the world. However, reports of FH mutations in the Chinese population are still limited. In this paper, 20 unrelated FH families were enrolled to detect the candidate gene variants in Chinese FH population by DNA direct sequencing. We identified 12 LDLR variants in 13 FH probands. Importantly, we first reported two unique mutations (c.2000_2000 delG/p.C667LfsX6 and c.605T>C/p.F202S) in LDLR gene. Our discoveries expand the spectrum of LDLR mutations and contribute to the genetic diagnosis and counseling for FH patients.


Atherosclerosis | 2017

The genetic spectrum of familial hypercholesterolemia in the central south region of China

Rong Xiang; Liang-Liang Fan; Min-Jie Lin; Jing-Jing Li; Xiang-Yu Shi; Jie-Yuan Jin; Yu-Xing Liu; Ya-Qin Chen; Kun Xia; Shui-ping Zhao

BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is the most common and severe autosomal dominant lipid metabolism dysfunction, which causes xanthoma, atherosclerosis and coronary heart disease. Earlier studies showed that mutations in LDLR, APOB and PCSK9 cause FH. Although more than 75% of the population in Europe has been scrutinized for FH-causing mutations, the genetic diagnosis proportion among Chinese people remains very low (less than 0.5%). The aim of this study was to perform a survey and mutation detection among the Chinese population. METHODS 219 FH patients from the central south region of China were enrolled. After extracting DNA from circulating lymphocytes, we used direct DNA sequencing to screen each exon of LDLR, APOB and PCSK9. All detected variants were predicted by Mutationtaster, Polyphen-2 and SIFT to assess their effects. RESULTS In total, 43 mutations were identified from 158 FH patients. Among them, 11 novel mutations were found, including seven LDLR mutations, two APOB mutations and two PCSK9 mutations. Moreover, five common mutations in LDLR were detected. We geographically marked their distributions on the map of China. CONCLUSIONS The spectrum of FH-causing mutations in the Chinese population is refined and expanded. Along with future studies, our study provides the necessary data as the foundation for the characterization of the allele frequency distribution in the Chinese population. The identification of more LDLR, APOB and PCSK9 novel mutations may expand the spectrum of FH-causing mutations and contribute to the genetic diagnosis and counseling of FH patients.


Molecular and Cellular Biochemistry | 2012

The potential role of RTN3 in monocyte recruitment and atherosclerosis

Ya-Qin Chen; Rong Xiang; Shui-ping Zhao

The recruitment of monocytes to arterial wall and their transformation into macrophages are generally accepted as important early events in the pathogenesis of atherosclerosis (AS). Our research group found Reticulon3 (RTN3), a member of the reticulon family, may be a candidate pathogenic element in the progress of AS. But it is virtually unknown in which process RTN3 may participate in and regulate the pathogenesis of AS. Here, we hypothesis that RTN3 may participate in the continuous process of circulating monocyte recruitment in AS including: (1) monocyte spreading and adhesion to luminal endothelium; (2) transendothelial migration and may also contribute to the conversion of monocyte to macrophage in subendothelium.


Journal of Cellular and Molecular Medicine | 2017

Whole-exome sequencing identifies a novel mutation of GPD1L (R189X) associated with familial conduction disease and sudden death

Hao Huang; Ya-Qin Chen; Liang-Liang Fan; Shuai Guo; Jing-Jing Li; Jie-Yuan Jin; Rong Xiang

Cardiac conduction disease (CCD) is a serious disorder and the leading cause of mortality worldwide. It is characterized by arrhythmia, syncope or even sudden cardiac death caused by the dysfunction of cardiac voltage‐gated channel. Previous study has demonstrated that mutations in genes encoding voltage‐gated channel and related proteins were the crucial genetic lesion of CCD. In this study, we employed whole‐exome sequencing to explore the potential causative genes in a Chinese family with ventricular tachycardia and syncope. A novel nonsense mutation (c.565C>T/p.R189X) of glycerol‐3‐phosphate dehydrogenase‐like (GPD1L) was identified and co‐segregated with the affected family members. GPD1L is a crucial interacting protein of SCN5A, a gene encoded sodium channel α‐subunit Nav1.5 and mainly associated with Brugada syndrome (BrS). The novel mutation (c.565C>T/p.R189X) may result in a premature stop codon at position 189 in exon 4 of the GPD1L gene and lead to functional haploinsufficiency of GPD1L due to mRNA carrying this mutation will be degraded by nonsense‐mediated mRNA decay, which has been confirmed by Western blot in HEK293 cells transfected HIS‐GPD1L plasmid. The levels of GPD1L decreasing may disturb the function of Nav1.5 and induce arrhythmia and syncope in the end. In conclusion, our study not only further supported the important role of GPD1L in CCD, but also expanded the spectrum of GPD1L mutations and will contribute to the genetic diagnosis and counselling of families with CCD.


SpringerPlus | 2016

Mutation detection in Chinese patients with familial hypercholesterolemia

Ran Du; Liang-Liang Fan; Min-Jie Lin; Zhi-Jian He; Hao Huang; Ya-Qin Chen; Jing-Jing Li; Kun Xia; Shui-ping Zhao; Rong Xiang

BackgroundFamilial hypercholesterolemia (FH) is the first molecularly and clinically characterized genetic disease of lipid metabolism. It is an autosomal dominant disorder with significantly elevated levels of total cholesterol and low density of lipoprotein cholesterol in serum, which would lead to extensive xanthomas and premature coronary heart disease. Mutations in low density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 and Apo lipoprotein B-100 (APOB) have been identified to be the underlying cause of this disease.MethodsGenetic testing and reports of the mutations in the Chinese population are still limited. In this study, 11 unrelated Chinese FH families were enrolled to detect the candidate gene variants by DNA direct sequencing.Results and conclusionWe identified 12 mutations (11 in LDLR and one in APOB) in ten FH families. Three novel LDLR mutations (c.516C>A/p.D172E, c.1720C>A/p.R574S and c.760C>T/p.Q254X) were identified and co-segregated with the affected individuals in the families. Our discoveries not only further supports the significant role of LDLR in FH, but also expands the spectrum of LDLR mutations. These new insights will contribute to the genetic diagnosis and counseling of FH patients.


Gene | 2018

Whole exome sequencing identifies a novel mutation (c.333 + 2T > C) of TNNI3K in a Chinese family with dilated cardiomyopathy and cardiac conduction disease

Liang-Liang Fan; Hao Huang; Jie-Yuan Jin; Jing-Jing Li; Ya-Qin Chen; Shui-ping Zhao; Rong Xiang

Dilated Cardiomyopathy (DCM) and cardiac conduction disease (CCD) are two kinds if diseases that can induce heart failure, syncope and even sudden cardiac death (SCD). DCM patients can experience CCD at the same time. In recent research, some disease-causing genes and variants have been identified in patients with DCM and CCD, such as Alpha-Actinin-2 and TNNI3 Interacting Kinase (TNNI3K). In this study, we employed whole-exome sequencing (WES) to explore the potential causative genes in a Chinese family with DCM and CCD. A novel splice site mutation (c.333 + 2 T > C) of TNNI3K was identified and co-segregated with the affected family members. This novel mutation was also absent in 200 healthy local controls and predicted to be disease-causing by Mutationtaster. The splice site mutation (c.333 + 2 T > C) may result in a premature stop codon in exon 4 of the TNNI3K gene and can induce nonsense-mediated mRNA decay. Real-time qPCR also confirmed that the level of TNNI3K mRNA expression was decreased significantly compared with the controls, which may lead to myocardial structural disorder and arrhythmia. In this study we reported the third novel mutation of TNNI3K in DCM and CCD patients which further supported the important role of TNNI3K in heart development and expanded the spectrum of TNNI3K mutations. The results may contribute to the genetic diagnosis and counseling of families with DCM and CCD.


QJM: An International Journal of Medicine | 2018

A novel mutation of dipeptidyl aminopeptidase-like protein-6 in a family with suspicious idiopathic ventricular fibrillation

Dong-Bo Ding; Liang-Liang Fan; Z Xiao; Hao Huang; Ya-Qin Chen; Shuai Guo; Z H Liu; Rong Xiang

Background Sudden cardiac death (SCD) occurs in a broad spectrum of cardiac pathologies and is an important cause of mortality in the general population. Idiopathic ventricular fibrillation (IVF) is a rare but important factor resulting in SCD. It is diagnosed in a resuscitated cardiac arrest victim underlying unknown cause, with documented ventricular fibrillation. Previous studies have demonstrated that mutations in dipeptidyl aminopeptidase-like protein-6 (DPP6) and cardiac sodium channel Nav1.5 (SCN5A) are the most important genetic factors involve in IVF. Aim By using whole sequencing to identify the genetic lesion of a family with suspicious idiopathic ventricular fibrillation. Design Prospective genetic study. Methods In this study, we employed whole-exome sequencing in combination with arrhythmia-related gene filtering to identify the genetic lesion for a family suffering from suspicious IVF, syncope and SCD. We then generated the plasmids of DPP6-pcDNA3.1+ (WT and c.1578G>C/p.Q526H). Kv4.3-pcDNA3.1+ was co-transfected together with/without DPP6-pcDNA3.1+ (WT and/or c.1578G>C/p.Q526H) into HEK293 cells to perform the patch clamp experiments. Results A novel missense mutation (c.1578G>C/p.Q526H) of DPP6 was identified and co-segregated with affected patients in this family. Patch clamp experiments suggested that this novel mutation might result in a gain of function and disturb the efflux of potassium ion. Conclusion Our study not only reported the second missense mutation of DPP6 in heart disease and expanded the spectrum of DPP6 mutations, but also contribute to the genetic diagnosis and counseling of families with suspicious IVF, syncope and SCD.


Clinical Chemistry and Laboratory Medicine | 2018

A de novo mutation of SMYD1 (p.F272L) is responsible for hypertrophic cardiomyopathy in a Chinese patient

Liang-Liang Fan; Dong-Bo Ding; Hao Huang; Ya-Qin Chen; Jie-Yuan Jin; Kun Xia; Rong Xiang

Abstract Background Hypertrophic cardiomyopathy (HCM) is a serious disorder and one of the leading causes of mortality worldwide. HCM is characterized as left ventricular hypertrophy in the absence of any other loading conditions. In previous studies, mutations in at least 50 genes have been identified in HCM patients. Methods In this research, the genetic lesion of an HCM patient was identified by whole exome sequencing. Real-time polymerase chain reaction (PCR), immunofluorescence and Western blot were used to analyze the effects of the identified mutation. Results According to whole exome sequencing, we identified a de novo mutation (c.814T>C/p.F272L) of SET and MYND domain containing histone methyltransferase 1 (SMYD1) in a Chinese patient with HCM exhibiting syncope. We then generated HIS-SMYD1-pcDNA3.1+ (WT and c.814T>C/p.F272L) plasmids for transfection into AC16 cells to functionalize the mutation. The immunofluorescence experiments indicated that this mutation may block the SMYD1 protein from entering the nucleus. Both Western blot and real-time PCR revealed that, compared with cells transfected with WT plasmids, the expression of HCM-associated genes such as β-myosin heavy chains, SMYD1 chaperones (HSP90) and downstream targets including TGF-β were all disrupted in cells transfected with the mutant plasmid. Previous studies have demonstrated that SMYD1 plays a crucial role in sarcomere organization and heart development. Conclusions This novel mutation (c.814T>C/p.F272L) may be the first identified disease-causing mutation of SMYD1 in HCM patients worldwide. Our research expands the spectrum of HCM-causing genes and contributes to genetic counseling for HCM patients.

Collaboration


Dive into the Ya-Qin Chen's collaboration.

Top Co-Authors

Avatar

Rong Xiang

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Huang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jie-Yuan Jin

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jing-Jing Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Shui-ping Zhao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Shuai Guo

Central South University

View shared research outputs
Top Co-Authors

Avatar

Kun Xia

Central South University

View shared research outputs
Top Co-Authors

Avatar

Dong-Bo Ding

Central South University

View shared research outputs
Top Co-Authors

Avatar

Min-Jie Lin

Central South University

View shared research outputs
Researchain Logo
Decentralizing Knowledge