Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ya-Wen Wang is active.

Publication


Featured researches published by Ya-Wen Wang.


Oncotarget | 2015

MicroRNA-27b, microRNA-101 and microRNA-128 inhibit angiogenesis by down-regulating vascular endothelial growth factor C expression in gastric cancers

Hai-Ting Liu; Ai-Yan Xing; Xu Chen; Ran-Ran Ma; Ya-Wen Wang; Duan-Bo Shi; Hui Zhang; Peng Li; Hong-Fang Chen; Yu-hong Li; Peng Gao

Vascular Endothelial Growth Factor C (VEGF-C) has critical roles in angiogenesis in human cancers; however, the underlying mechanisms regulating VEGF-C expression remain largely unknown. In the present study, VEGF-C protein expression and the density of blood vessels or lymphatic vessels were determined by immunohistochemistry in 103 cases of gastric cancer tissues. Suppression of VEGF-C by miR-27b, miR-101 and miR-128 was investigated by luciferase assays, Western blot and ELISA. The miRNAs expression levels were detected in human gastric cancers by real-time quantitative PCR. Cell proliferation, migration and invasion assays were performed to assess the effect of miRNAs on gastric cancer cells and human umbilical vascular endothelial cells (HUVECs). Our data showed that high VEGF-C expression was significantly associated with increased tumor size, advanced TNM classification and clinical stage, higher microvessel density (MVD) and lymphatic density (LVD), as well as poor survival in patients with gastric cancer. Furthermore, VEGF-C was found to be a direct target gene of miR-27b, miR-101, and miR-128. The expression levels of the three miRNAs were inversely correlated with MVD. Overexpression of miR-27b, miR-101, or miR-128 suppressed migration, proliferation activity, and tube formation in HUVECs by repressing VEGF-C secretion in gastric cancer cells. We conclude that miR-27b, miR-101 and miR-128 inhibit angiogenesis by down-regulating VEGF-C expression in gastric cancers.


The Journal of Pathology | 2016

Suppression of SPIN1‐mediated PI3K–Akt pathway by miR‐489 increases chemosensitivity in breast cancer

Xu Chen; Ya-Wen Wang; Ai-Yan Xing; Shuai Xiang; Duan-Bo Shi; Lei Liu; Yan-Xiang Li; Peng Gao

Drug resistance is one of the major obstacles for improving the prognosis of breast cancer patients. Increasing evidence has linked the association of aberrantly expressed microRNAs (miRNAs) with tumour development and progression as well as chemoresistance. Despite recent advances, there is still little known about the potential role and mechanism of miRNAs in breast cancer chemoresistance. Here we describe that 16 miRNAs were found to be significantly down‐regulated and 11 up‐regulated in drug‐resistant breast cancer tissues compared with drug‐sensitive tissues, using a miRNA microarray. The results also showed miR‐489 to be one of the most down‐regulated miRNAs in drug‐resistant tissues and cell lines, as confirmed by miRNA microarray screening and real‐time quantitative PCR. A decrease in miR‐489 expression was associated with chemoresistance as well as lymph node metastasis, increased tumour size, advanced pTNM stage and poor prognosis in breast cancer. Functional analysis revealed that miR‐489 increased breast cancer chemosensitivity and inhibited cell proliferation, migration and invasion, both in vitro and in vivo. Furthermore, SPIN1, VAV3, BCL2 and AKT3 were found to be direct targets of miR‐489. SPIN1 was significantly elevated in drug‐resistant and metastatic breast cancer tissues and inversely correlated with miR‐489 expression. High expression of SPIN1 was associated with higher histological grade, lymph node metastasis, advanced pTNM stage and positive progesterone receptor (PR) status. Increased SPIN1 expression enhanced cell migration and invasion, inhibited apoptosis and partially antagonized the effects of miR‐489 in breast cancer. PIK3CA, AKT, CREB1 and BCL2 in the PI3K–Akt signalling pathway, demonstrated to be elevated in drug‐resistant breast cancer tissues, were identified as downstream effectors of SPIN1. It was further found that either inhibition of SPIN1 or overexpression of miR‐489 suppressed the PI3K–Akt signalling pathway. These data indicate that miR‐489 could reverse the chemoresistance of breast cancer via the PI3K–Akt pathway by targeting SPIN1. Copyright


PLOS ONE | 2014

Clinicopathological significance of microRNA-214 in gastric cancer and its effect on cell biological behaviour.

Ya-Wen Wang; Duan-Bo Shi; Xu Chen; Chao Gao; Peng Gao

Accumulating evidence indicates that numerous microRNAs are involved in the tumorigenesis and progression of gastric cancer, while the clinical significance of microRNA-214 in gastric cancer is poorly understood and the exact role of microRNA-214 in gastric cancer remains obscure. In the present study, expression levels of microRNA-214 in 80 gastric carcinoma tissues, 18 nontumourous gastric tissues, and 4 types of gastric cancer cell lines were quantified by reverse transcription followed by real-time quantitative polymerase chain reaction (RT-qPCR), and the relationship between microRNA-214 expression and cliniopathological characteristics including prognosis was explored. To investigate the potential role of microRNA-214 in gastric cancer cell biological behaviour, we performed cell proliferation, apoptosis, migration and invasion assays in four gastric cancer cell lines and an immortalized gastric cell line in vitro. Our results showed that microRNA-214 was dramatically downregulated in gastric cancer tissues and gastric cancer cell lines, compared with nontumourous gastric tissues. Stepwise downregulation of microRNA-214 expression was observed among nontumourous gastric mucosa, nonmetastasis gastric cancer tissues, and metastasis gastric cancer tissues. The expression of microRNA-214 was significantly inversely correlated with lymph node metastasis and tumour size but had no correlation with the patients prognosis. Ectopic expression of microRNA-214 could inhibit cell migration and invasion ability in SGC7901 and MKN45 gastric cancer cells. And knockdown of microRNA-214 significantly facilitated cell proliferation, migration and invasion in a cell-specific manner in MKN28, BGC823 and GES-1 cells. Colony stimulating factor 1 (CSF1) was identified as a target gene of microRNA-214. In summary, our data demonstrated that microRNA-214 is a promising novel biomarker for lymph node metastasis in patients with gastric cancer. And we identified that downregulation of microRNA-214 may regulate the proliferation, invasion and migration of gastric cancer cells by directly targeting CSF1.


Cancer Letters | 2015

C/EBPα-induced miR-100 expression suppresses tumor metastasis and growth by targeting ZBTB7A in gastric cancer.

Duan-Bo Shi; Ya-Wen Wang; Ai-Yan Xing; Ji-Wei Gao; Hui Zhang; Xiang-Yu Guo; Peng Gao

MicroRNAs have been reported to play key roles in various human cancers, including gastric cancer. However, understanding of the expression of miR-100 and its regulatory mechanisms in human gastric cancer remains elusive. In this study, we reveal that miR-100 is downregulated in gastric cancer samples and gastric cancer cell lines. Furthermore, lower miR-100 expression was found in primary gastric cancer samples with lymphatic metastasis compared to those without lymphatic metastasis. Overexpression of miR-100 suppressed tumor growth in vivo and inhibited gastric cancer invasion and metastasis in vitro and in vivo. Furthermore, we demonstrated that miR-100 reduced gastric cancer aggressiveness by directly targeting ZBTB7A. Knockdown of ZBTB7A by siRNA disrupted gastric cancer progression by impairing tumor invasion and metastasis. High expression of ZBTB7A was significantly correlated with poorer prognosis in gastric cancer patients. Our results also showed that the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) could induce the expression of miR-100 by binding to the putative promoter region of miR-100. This study demonstrated that miR-100 could be induced by C/EBPα and may act as a tumor suppressor gene by inhibiting ZBTB7A.


The Journal of Pathology | 2015

Catenin‐δ1, negatively regulated by miR‐145, promotes tumour aggressiveness in gastric cancer

Ai-Yan Xing; Ya-Wen Wang; Zhong-Xue Su; Duan-Bo Shi; Bin Wang; Peng Gao

Increasing evidence supports the association of catenin‐δ1 (CTNND1, p120ctn) with tumour development and progression. However, the mechanism and clinical significance of CTNND1 deregulation in gastric cancer remain unknown. The expression level and cellular localization of CTNND1 were determined by immunohistochemistry in 126 human gastric cancer and 50 non‐tumourous tissues. The cellular localization of CTNND1 and epithelial cadherin (E‐cadherin) were detected by immunofluorescence. Cell proliferation, apoptosis, migration and invasion assays were performed to assess the effect of CTNND1 cDNA or CTNND1 siRNA transfection on gastric cancer cells. Luciferase assay, western blot analysis and in vivo assays were used to determine whether CTNND1 could be regulated by miR‐145. The results demonstrate that the cytoplasmic localization of CTNND1 protein, rather than expression level, was indicative of higher clinical stage, positive lymph node metastasis and poorer prognosis in gastric cancers. CTNND1 could promote gastric cancer cell migration and invasion with little effect on cellular proliferation and apoptosis. CTNND1 was proved to be a direct target gene for miR‐145. Besides suppressing cytoplasmic CTNND1 expression, miR‐145 could recover the membranous localization of CTNND1 and E‐cadherin. We conclude that cytoplasmic CTNND1 can serve as an independent prognostic factor for patients with gastric cancers. MiR‐145 inhibits invasion of gastric cancer cells not only by down‐regulating cytoplasmic CTNND1 expression but also by inducing the translocation of CTNND1 and E‐cadherin from the cytoplasm to the cell membrane through down‐regulating N‐cadherin. Copyright


Scientific Reports | 2017

Prognostic Value of microRNA Signature in Patients with Gastric Cancers

Hai-Ting Liu; Ya-Wen Wang; Ai-Yan Xing; Duan-Bo Shi; Hui Zhang; Xiang-Yu Guo; Jing Xu; Peng Gao

The occurrence of lymph node metastases (LNM) after endoscopic submucosal dissection (ESD) in patients with gastric cancer (GC) leads to poor prognosis. However, few biomarkers are available to predict LNM in GC patients. Thus, we measured expression of 6 cancer-related miRNAs using real-time RT-PCR in 102 GC samples that were randomized into a training set and a testing set (each, 51 cases). Using logistic regression, we identified 4-miRNA (miR-27b, miR-128, miR-100 and miR-214) signatures for predicting LNM in GC patients. Patients with high-risk scores for the 4-miRNA signature tended to have higher LNM than those with low-risk scores. Meanwhile, the ROC curve of the 4-miRNA signature was better for predicting LNM in GC patients. In addition, Cox regression analysis indicated that a 2-miRNA signature (miR-27b and miR-214) or a miR-214/N stage signature was predictive of survival for GC patients. This work describes a previously unrecognized 4-miRNA signature involved in LNM and a 2-miRNA signature or miR-214/N stage signature related to GC patients’ survival.


Journal of Cancer Research and Clinical Oncology | 2014

Aberrant expression of CD227 is correlated with tumor characteristics and invasiveness of breast carcinoma

Ya-Wen Wang; Duan-Bo Shi; Ya-Min Liu; Yanlin Sun; Xu Chen; Shuai Xiang; Qiang Fu; Jun-Min Wei; Peng Gao

PurposeIncreasing evidences demonstrate that CD227 plays a crucial role in the development and progression of breast cancer. However, the function of CD227 in breast carcinoma was still controversial and the investigation on CD227 in Asian race was scarce.MethodsTo investigate the relationship between CD227 and tumor characteristics of breast carcinoma, CD227, estrogen receptor (ER), progesterone receptor (PR), Her2⁄neu and Ki-67 were detected by immunohistochemistry in a series of 227 patients. The Kaplan–Meier method and log-rank tests were used to estimate the correlation between CD227 expression and patients’ prognosis. Furthermore, in vitro invasion assay was performed to examine the effect of CD227 on the invasiveness of breast carcinoma cells after transfection with CD227 cDNA or antisense phosphorothioate oligodeoxynucleotides (ASODN) against CD227 mRNA.ResultsOur data demonstrate that the cytoplasm staining and high expression of CD227 were positively related to the aggressiveness of breast cancer. Both circumferential membrane staining and cytoplasm staining were associated with lymph node metastasis. Moreover, the cytoplasm staining and overexpression of CD227 were found to be related to Her-2/neu positivity, higher Ki-67 positivity and poorer survival of patients. We further demonstrated that the invasion ability of breast carcinoma cells could be enhanced or inhibited by CD227 cDNA or ASODN, respectively.ConclusionsWe conclude that the aberrant expression of CD227, especially cytoplasm staining could be predictive for tumor aggressiveness, lymph node metastasis, poorer outcome of patients with breast cancers. And CD227 could promote the invasion ability of breast cancer cells, suggesting a potential role of CD227 as an oncogene in breast carcinoma.


Oncotarget | 2017

MiR-1268b confers chemosensitivity in breast cancer by targeting ERBB2-mediated PI3K-AKT pathway

Wen-Jie Zhu; Xu Chen; Ya-Wen Wang; Hai-Ting Liu; Ran-Ran Ma; Peng Gao

Chemoresistance represents a major obstacle to effective therapy for breast cancer. Emerging evidences associated aberrantly expressed miRNAs with tumor development and chemoresistance. MiR-1268b has never been studied in any cancers before, and its roles in mediating tumor progression and drug resistance are still unclear. Selected from miRNA microarray and confirmed by real-time quantitative PCR (RT-qPCR), miR-1268b was found to be significantly upregulated in drug sensitive and ERBB2 negative tissues, as well as in breast cancer patients with low clinical stage. And miR-1268b had a higher expression in chemosensitive breast cancer cell lines, compared with the chemoresistant cell line. Moreover, the results revealed that miR-1268b induced breast cancer cell apoptosis and increased cell chemosensitivity. ERBB2 was demonstrated to be the target gene of miR-1268b by dual-luciferase reporter assays, western blot, and immunocytochemistry. Furthermore, PI3KCA, AKT, BCL2 in the ERBB2-PI3K-AKT signaling pathway were found to be downstream effectors of miR-1268b. In conclusion, miR-1268b increased chemosensitivity, at least in part, via modulation of PI3K-AKT pathway by targeting ERBB2. MiR-1268b may serve as a potential therapeutic target for patients with breast cancers.


Tumor Biology | 2016

Understanding the CREB1-miRNA feedback loop in human malignancies

Ya-Wen Wang; Xu Chen; Rong Ma; Peng Gao

AbstractcAMP response element binding protein 1 (CREB1, CREB) is a key transcription factor that mediates transcriptional responses to a variety of growth factors and stress signals. CREB1 has been shown to play a critical role in development and progression of tumors. MicroRNAs (miRNAs) are a class of non-coding RNAs. They post-transcriptionally regulate gene expression through pairing with the 3′-UTR of their target mRNAs and thus regulate initiation and progression of various types of human cancers. Recent studies have demonstrated that a number of miRNAs can be transcriptionally regulated by CREB1. Interestingly, CREB1 expression can also be modulated by miRNAs, thus forming a feedback loop. This review outlines the functional roles of CREB1, miRNA, and their interactions in human malignancies. This will help to define a relationship between CREB1 and miRNA in human cancer and develop novel therapeutic strategies.


Cancer Investigation | 2015

ZEB1 Expression Is Correlated With Tumor Metastasis and Reduced Prognosis of Breast Carcinoma in Asian Patients

Shuai Xiang; Ya-Min Liu; Xu Chen; Ya-Wen Wang; Ran-Ran Ma; Xiao-Juan Wu; Peng Gao

ABSTRACT Tumor metastasis is one of the key events leading to tumor relapse and poor prognosis. Nowadays, increasing evidences demonstrated that ZEB1 was implicated in human carcinogenesis. However, involvement of ZEB1 deregulation in tumorigenesis in Asian patients with breast carcinoma remains elusive. The present study included 102 Asian patients with breast carcinoma treated by surgery from January of 2005 to December of 2006, and the expression of ZEB1 was evaluated by immunohistochemistry. To further assess the prognostic value of ZEB1, Kaplan–Meier curves were constructed. In this study, elevated levels of ZEB1 expression was found in carcinomas with higher aggressive potential. We also correlated expression of ZEB1 with lymph node metastasis (P = 0.021), advanced clinical stage (P = 0.012) in all cases, and high tumor grade (P = 0.047) in invasive ductal carcinoma. Furthermore, our data suggested an elevated level of Ki-67 expression in cases with positive expression of ZEB1. Clinically, reduced overall survival and disease-free survival were observed in cases with positive ZEB1 expression than that in negative cases. Our results correlated ZEB1 with aggressive potentials of breast carcinoma and revealed a possibility for ZEB1 as a prognostic marker in breast carcinoma.

Collaboration


Dive into the Ya-Wen Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge