Yaacov Davidov
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaacov Davidov.
BioEssays | 2009
Yaacov Davidov; Edouard Jurkevitch
Accumulating data suggest that the eukaryotic cell originated from a merger of two prokaryotes, an archaeal host and a bacterial endosymbiont. However, since prokaryotes are unable to perform phagocytosis, the means by which the endosymbiont entered its host is an enigma. We suggest that a predatory or parasitic interaction between prokaryotes provides a reasonable explanation for this conundrum. According to the model presented here, the host in this interaction was an anaerobic archaeon with a periplasm‐like space. The predator was a small (facultative) aerobic α‐proteobacterium, which penetrated and replicated within the host periplasm, and later became the mitochondria. Plausible conditions under which this interaction took place and circumstances that may have led to the contemporary complex eukaryotic cell are discussed.
Microbial Ecology | 2005
Yoav Herschkovitz; Anat Lerner; Yaacov Davidov; Michael Rothballer; Anton Hartmann; Yaacov Okon; Edouard Jurkevitch
Inoculation with Azospirillum brasilense exerts beneficial effects on plant growth and crop yields. In this study, a comparative analysis of maize (Zea mays) root inoculated or not inoculated with A. brasilense strains was performed in two soils. Colonization dynamics of the rhizobacteria were tracked in various root compartments using 16S rRNA-targeted probes and 4′,6′diamidino-2-phenylindole staining, and the structure of bacterial populations in the same samples was analyzed by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction products of the 16S rRNA gene. Based on whole cell hybridization, a large fraction of the bacterial community was found to be active in both the rhizoplane–endorhizosphere and rhizosphere soil compartments, in both soil types. A DGGE fingerprint analysis revealed that plant inoculation with A. brasilense had no effect on the structural composition of the bacterial communities, which were also found to be very similar at the root tip and at zones of root branching. However, rhizobacterial populations were strongly influenced by plant age, and their complexity decreased in the rhizoplane–endorhizosphere in comparison to rhizosphere soil. A clone library generated from rhizosphere DNA revealed a highly diverse community of soil and rhizosphere bacteria, including an indigenous Azospirillum-like organism. A large proportion of these clones was only distantly related to known species.
The EMBO Journal | 2008
Galit N Cohen-Ben-Lulu; Noreen R. Francis; Eyal Shimoni; Dror Noy; Yaacov Davidov; Krishna Prasad; Yael Sagi; Gary Cecchini; Rose M. Johnstone; Michael Eisenbach
The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane‐bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions.
International Journal of Systematic and Evolutionary Microbiology | 2013
Susan F. Koval; Sandra H. Hynes; Ronald S. Flannagan; Zohar Pasternak; Yaacov Davidov; Edouard Jurkevitch
The life cycle, prey range and taxonomic status of a Bdellovibrio-like organism, strain JSS(T), were studied. Strain JSS(T) was isolated from sewage in London, Ontario, Canada, in enrichment culture with Caulobacter crescentus prey cells. During predation, this strain remained attached to the outside of a stalked C. crescentus cell. No periplasmic growth stage was observed and no bdelloplast was formed. The stalked cells of C. crescentus retained their shape and, after predation, were devoid of cytoplasmic content, as shown by transmission electron microscopy. A periplasmic growth stage has been a definitive character in the description of members of the genera Bdellovibrio, Bacteriovorax, Bacteriolyticum and Peredibacter. This is the first description of an epibiotic predator in this group of prokaryotic predators. The G+C content of the genomic DNA of strain JSS(T) was 46.1 mol%. 16S rRNA gene sequence analysis showed that this strain was related to Bdellovibrio bacteriovorus strains HD100(T), 109J, 114 and 127 (90-93 % similarity). Phylogenetic analysis based on 16S rRNA gene sequences grouped strain JSS(T) with the Bdellovibrio cluster, but at a distance from other Bdellovibrio isolates. On the basis of features of the life cycle and phylogenetic data, it was concluded that strain JSS(T) merits classification as the type strain of a novel species, for which the name Bdellovibrio exovorus sp. nov. is proposed (type strain JSS(T) =ATCC BAA-2330(T) = DSM 25223(T)).
Archive | 2006
Edouard Jurkevitch; Yaacov Davidov
Predation is one of the commonest types of interaction in the living world. Its roots appear to be ancient, and it may have first occurred early in the evolution of life forms. Predators have evolved many times in the animal realm, and this also seems to be the case within the prokaryotes. Although still rather limited, our knowledge of obligate and non-obligate bacterial predators suggest that they are common in many bacterial phyla, as well as in the environment. In this work, we survey and describe the known bacterial predators according to their phylogenetic affiliation. A hallmark of many bacterial predators is their ability to degrade the polymeric structures of their bacterial preys. An additional characteristic of known obligate predators is a small cell size. We use such distinguishing features to put forward hypotheses relating to the origin of predation in prokaryotes and to the impact of predation on the evolution of the eukaryotic cell.
International Journal of Systematic and Evolutionary Microbiology | 2004
Yaacov Davidov; Edouard Jurkevitch
Environmental Microbiology | 2006
Yaacov Davidov; Dorothée Huchon; Susan F. Koval; Edouard Jurkevitch
Environmental Microbiology | 2006
Yaacov Davidov; Avital Friedjung; Edouard Jurkevitch
Environmental Microbiology | 2005
Yoav Herschkovitz; Anat Lerner; Yaacov Davidov; Yaacov Okon; Edouard Jurkevitch
BioEssays | 2007
Yaacov Davidov; Edouard Jurkevitch