Yabing Zhu
Beijing Genomics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yabing Zhu.
Nature | 2012
Guofan Zhang; Xiaodong Fang; Ximing Guo; Li Li; Ruibang Luo; Fei Xu; Pengcheng Yang; Linlin Zhang; Xiaotong Wang; Haigang Qi; Zhiqiang Xiong; Huayong Que; Yinlong Xie; Peter W. H. Holland; Jordi Paps; Yabing Zhu; Fucun Wu; Yuanxin Chen; Jiafeng Wang; Chunfang Peng; Jie Meng; Lan Yang; Jun Liu; Bo Wen; Na Zhang; Zhiyong Huang; Qihui Zhu; Yue Feng; Andrew Mount; Dennis Hedgecock
The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster’s adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.
Nature | 2011
Eun Bae Kim; Xiaodong Fang; Alexey A. Fushan; Zhiyong Huang; Alexei V. Lobanov; Lijuan Han; Stefano M. Marino; Xiaoqing Sun; Anton A. Turanov; Pengcheng Yang; Sun Hee Yim; Xiang Zhao; Marina V. Kasaikina; Nina Stoletzki; Chunfang Peng; Paz Polak; Zhiqiang Xiong; Adam Kiezun; Yabing Zhu; Yuanxin Chen; Gregory V. Kryukov; Qiang Zhang; Leonid Peshkin; Lan Yang; Roderick T. Bronson; Rochelle Buffenstein; Bo Wang; Changlei Han; Qiye Li; Li Chen
The naked mole rat (Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal. Although it is the size of a mouse, its maximum lifespan exceeds 30 years, making this animal the longest-living rodent. Naked mole rats show negligible senescence, no age-related increase in mortality, and high fecundity until death. In addition to delayed ageing, they are resistant to both spontaneous cancer and experimentally induced tumorigenesis. Naked mole rats pose a challenge to the theories that link ageing, cancer and redox homeostasis. Although characterized by significant oxidative stress, the naked mole rat proteome does not show age-related susceptibility to oxidative damage or increased ubiquitination. Naked mole rats naturally reside in large colonies with a single breeding female, the ‘queen’, who suppresses the sexual maturity of her subordinates. They also live in full darkness, at low oxygen and high carbon dioxide concentrations, and are unable to sustain thermogenesis nor feel certain types of pain. Here we report the sequencing and analysis of the naked mole rat genome, which reveals unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness and insensitivity to low oxygen, and altered visual function, circadian rythms and taste sensing. This information provides insights into the naked mole rat’s exceptional longevity and ability to live in hostile conditions, in the dark and at low oxygen. The extreme traits of the naked mole rat, together with the reported genome and transcriptome information, offer opportunities for understanding ageing and advancing other areas of biological and biomedical research.
Nature Communications | 2014
Xianhui Wang; Xiaodong Fang; Pengcheng Yang; Xuanting Jiang; Feng Jiang; De-Jian Zhao; Bolei Li; Feng Cui; Jianing Wei; Chuan Ma; Y. Wang; Jing He; Yuan Luo; Zhifeng Wang; Xiaojiao Guo; Wei Guo; Xuesong Wang; Yi Zhang; Meiling Yang; Shuguang Hao; Bing Chen; Zongyuan Ma; Dan Yu; Zhiqiang Xiong; Yabing Zhu; Dingding Fan; Lijuan Han; Bo Wang; Yuanxin Chen; Junwen Wang
Locusts are one of the world’s most destructive agricultural pests and represent a useful model system in entomology. Here we present a draft 6.5 Gb genome sequence of Locusta migratoria, which is the largest animal genome sequenced so far. Our findings indicate that the large genome size of L. migratoria is likely to be because of transposable element proliferation combined with slow rates of loss for these elements. Methylome and transcriptome analyses reveal complex regulatory mechanisms involved in microtubule dynamic-mediated synapse plasticity during phase change. We find significant expansion of gene families associated with energy consumption and detoxification, consistent with long-distance flight capacity and phytophagy. We report hundreds of potential insecticide target genes, including cys-loop ligand-gated ion channels, G-protein-coupled receptors and lethal genes. The L. migratoria genome sequence offers new insights into the biology and sustainable management of this pest species, and will promote its wide use as a model system.
Nature Communications | 2013
Yu Fan; Zhiyong Huang; Changchang Cao; Ce-Shi Chen; Yuanxin Chen; Dingding Fan; Jing He; Haolong Hou; Li-Dan Hu; Xintian Hu; Xuanting Jiang; Ren Lai; Yongshan Lang; Bin Liang; Shengguang Liao; Dan Mu; Yuanye Ma; Yuyu Niu; Xiaoqing Sun; Jinquan Xia; Jin Xiao; Zhiqiang Xiong; Lin Xu; Lan Yang; Yun Zhang; Wei Zhao; Xudong Zhao; Yong-Tang Zheng; Ju-Min Zhou; Yabing Zhu
Chinese tree shrews (Tupaia belangeri chinensis) possess many features valuable in animals used as experimental models in biomedical research. Currently, there are numerous attempts to employ tree shrews as models for a variety of human disorders: depression, myopia, hepatitis B and C virus infections, and hepatocellular carcinoma, to name a few. Here we present a publicly available annotated genome sequence for the Chinese tree shrew. Phylogenomic analysis of the tree shrew and other mammalians highly support its close affinity to primates. By characterizing key factors and signalling pathways in nervous and immune systems, we demonstrate that tree shrews possess both shared common and unique features, and provide a genetic basis for the use of this animal as a potential model for biomedical research.
Nature Communications | 2014
Kristian W. Sanggaard; Jesper Bechsgaard; Xiaodong Fang; Jinjie Duan; Thomas F. Dyrlund; Vikas Gupta; Xuanting Jiang; Ling Cheng; Dingding Fan; Yue Feng; Lijuan Han; Zhiyong Huang; Zongze Wu; Li Liao; Virginia Settepani; Ida B. Thøgersen; Bram Vanthournout; Tobias Wang; Yabing Zhu; Peter Funch; Jan J. Enghild; Leif Schauser; Stig U. Andersen; Palle Villesen; Mikkel H. Schierup; Trine Bilde; Jun Wang
Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk.
Nature Communications | 2013
Inge Seim; Xiaodong Fang; Zhiqiang Xiong; Alexey V. Lobanov; Zhiyong Huang; Siming Ma; Yue Feng; Anton A. Turanov; Yabing Zhu; Tobias L. Lenz; Maxim V. Gerashchenko; Dingding Fan; Sun Hee Yim; Xiaoming Yao; Daniel D. Jordan; Yingqi Xiong; Yong Xin Ma; Andrey N. Lyapunov; Guanxing Chen; Oksana I. Kulakova; Yudong Sun; Sang-Goo Lee; Roderick T. Bronson; Alexey Moskalev; Shamil R. Sunyaev; Guojie Zhang; Anders Krogh; Jun Wang; Vadim N. Gladyshev
Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.
PLOS Genetics | 2015
Jingqun Ao; Yinnan Mu; Li-xin Xiang; Dingding Fan; Mingji Feng; Shicui Zhang; Qiong Shi; Lv-yun Zhu; Ting-ting Li; Yang Ding; Li Nie; Qiuhua Li; Wei-ren Dong; Liang Jiang; Bing Sun; Xinhui Zhang; Mingyu Li; Hai-Qi Zhang; ShangBo Xie; Yabing Zhu; Xuanting Jiang; Xianhui Wang; Pengfei Mu; Wei-Wei Chen; Zhen Yue; Zhuo Wang; Jun-Jun Wang; Jian-zhong Shao; Xinhua Chen
The large yellow croaker Larimichthys crocea (L. crocea) is one of the most economically important marine fish in China and East Asian countries. It also exhibits peculiar behavioral and physiological characteristics, especially sensitive to various environmental stresses, such as hypoxia and air exposure. These traits may render L. crocea a good model for investigating the response mechanisms to environmental stress. To understand the molecular and genetic mechanisms underlying the adaptation and response of L. crocea to environmental stress, we sequenced and assembled the genome of L. crocea using a bacterial artificial chromosome and whole-genome shotgun hierarchical strategy. The final genome assembly was 679 Mb, with a contig N50 of 63.11 kb and a scaffold N50 of 1.03 Mb, containing 25,401 protein-coding genes. Gene families underlying adaptive behaviours, such as vision-related crystallins, olfactory receptors, and auditory sense-related genes, were significantly expanded in the genome of L. crocea relative to those of other vertebrates. Transcriptome analyses of the hypoxia-exposed L. crocea brain revealed new aspects of neuro-endocrine-immune/metabolism regulatory networks that may help the fish to avoid cerebral inflammatory injury and maintain energy balance under hypoxia. Proteomics data demonstrate that skin mucus of the air-exposed L. crocea had a complex composition, with an unexpectedly high number of proteins (3,209), suggesting its multiple protective mechanisms involved in antioxidant functions, oxygen transport, immune defence, and osmotic and ionic regulation. Our results reveal the molecular and genetic basis of fish adaptation and response to hypoxia and air exposure. The data generated by this study will provide valuable resources for the genetic improvement of stress resistance and yield potential in L. crocea.
Nature Communications | 2015
Xueyan Li; Dingding Fan; Wei Zhang; Guichun Liu; Lu Zhang; Li Zhao; Xiaodong Fang; Lei Chen; Yang Dong; Yuan Chen; Yun Ding; Ruoping Zhao; Mingji Feng; Yabing Zhu; Yue Feng; Xuanting Jiang; Deying Zhu; Hui Xiang; Xikan Feng; Shuaicheng Li; Jun Wang; Guojie Zhang; Marcus R. Kronforst; Wen Wang
Butterflies are exceptionally diverse but their potential as an experimental system has been limited by the difficulty of deciphering heterozygous genomes and a lack of genetic manipulation technology. Here we use a hybrid assembly approach to construct high-quality reference genomes for Papilio xuthus (contig and scaffold N50: 492 kb, 3.4 Mb) and Papilio machaon (contig and scaffold N50: 81 kb, 1.15 Mb), highly heterozygous species that differ in host plant affiliations, and adult and larval colour patterns. Integrating comparative genomics and analyses of gene expression yields multiple insights into butterfly evolution, including potential roles of specific genes in recent diversification. To functionally test gene function, we develop an efficient (up to 92.5%) CRISPR/Cas9 gene editing method that yields obvious phenotypes with three genes, Abdominal-B, ebony and frizzled. Our results provide valuable genomic and technological resources for butterflies and unlock their potential as a genetic model system.
Nature Communications | 2014
Xiaodong Fang; Eviatar Nevo; Lijuan Han; Erez Y. Levanon; Jing Zhao; Aaron Avivi; Denis M. Larkin; Xuanting Jiang; Sergey Feranchuk; Yabing Zhu; Alla Fishman; Yue Feng; Noa Sher; Zhiqiang Xiong; Thomas Hankeln; Zhiyong Huang; Vera Gorbunova; Lu Zhang; Wei Zhao; Derek E. Wildman; Yingqi Xiong; Andrei V. Gudkov; Qiumei Zheng; Gideon Rechavi; Sanyang Liu; Lily Bazak; Jie Chen; Binyamin A. Knisbacher; Yao Lu; Imad Shams
The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors. Our results show high rates of RNA/DNA editing, reduced chromosome rearrangements, an over-representation of short interspersed elements (SINEs) probably linked to hypoxia tolerance, degeneration of vision and progression of photoperiodic perception, tolerance to hypercapnia and hypoxia and resistance to cancer. The remarkable traits of the BMR, together with its genomic and transcriptomic information, enhance our understanding of adaptation to extreme environments and will enable the utilization of BMR models for biomedical research in the fight against cancer, stroke and cardiovascular diseases.
PLOS ONE | 2013
Jun Wen; Zhiqiang Xiong; Ze-Long Nie; Likai Mao; Yabing Zhu; Xianzhao Kan; Stefanie M. Ickert-Bond; Jean M. Gerrath; Elizabeth A. Zimmer; Xiaodong Fang
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.