Yada Treesukosol
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yada Treesukosol.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009
Yada Treesukosol; Ginger D. Blonde; Alan C. Spector
The T1R2 and T1R3 proteins are expressed in taste receptor cells and form a heterodimer binding with compounds described as sweet by humans. We examined whether Polycose taste might be mediated through this heterodimer by testing T1R2 knockout (KO) and T1R3 KO mice and their wild-type (WT) littermate controls in a series of brief-access taste tests (25-min sessions with 5-s trials). Sucrose, Na-saccharin, and Polycose were each tested for three consecutive sessions with order of presentation varied among subgroups in a Latin-Square manner. Both KO groups displayed blunted licking responses and initiated significantly fewer trials of sucrose and Na-saccharin across a range of concentrations. KO mice tested after Polycose exposure demonstrated some degree of concentration-dependent licking of sucrose, likely attributable to learning related to prior postingestive experience. These results are consistent with prior findings in the literature, implicating the T1R2+3 heterodimer as the principal taste receptor for sweet-tasting ligands, and also provide support for the potential of postingestive experience to influence responding in the KO mice. In contrast, T1R2 KO and T1R3 KO mice displayed concentration-dependent licking responses to Polycose that tracked those of their WT controls and in some cases licked midrange concentrations more; the number of Polycose trials initiated overall did not differ between KO and WT mice. Thus, the T1R2 and T1R3 proteins are individually unnecessary for normal concentration-dependent licking of Polycose to be expressed in a brief-access test. Whether at least one of these T1R protein subunits is necessary for normal Polycose responsiveness remains untested. Alternatively, there may be a novel taste receptor(s) that mediates polysaccharide taste.
The Journal of Neuroscience | 2011
Yada Treesukosol; Alan C. Spector
Although it is clear that the heterodimer formed by the T1R2 and T1R3 proteins serves as the primary taste receptor for sweeteners, there is growing evidence that responses to glucose polymers may be mediated by a different taste receptor. Here we report that although T1R2 knock-out (KO) and T1R3 KO mice displayed severely impaired responding to glucose, maltose, and maltotriose in an initial session of a brief-access taste test (5 s trials, 25 min sessions) relative to wild-type (WT) mice, they subsequently increased their licking as a function of concentration for maltose and maltotriose with continued testing, presumably due to associating weak oral cues with positive post-ingestive consequences. Interestingly, these KO mice displayed relatively normal concentration-dependent licking to Polycose, a mixture of glucose polymers, even in the first session. Importantly, the experience-dependent increase in responsiveness to the sugars observed with the T1R2 and T1R3 single KO mice was not statistically significant in the T1R2/3 double KO mice. The double KO mice, however, still displayed significant concentration-dependent responding to Polycose in the first test session, albeit lick rates were slightly lower than those seen for WT mice, perhaps because small amounts of glucose, maltose, and maltotriose found in Polycose were enhancing the signal in WT mice or because T1R2 or T1R3 can possibly heteromerize with another protein to form a fully functional glucose polymer receptor. These findings provide behavioral evidence that glucose polymers, with an optimal chain length greater than three glucose moieties, stimulate a taste receptor independent of the T1R2+3 heterodimer.
Physiology & Behavior | 2011
Yada Treesukosol; Alan C. Spector
The discovery of the T1R family of Class C G protein-coupled receptors in the peripheral gustatory system a decade ago has been a tremendous advance for taste research, and its conceptual reach has extended to other organ systems. There are three proteins in the family, T1R1, T1R2, and T1R3, encoded by their respective genes, Tas1r1, Tas1r2, and Tas1r3. T1R2 combines with T1R3 to form a heterodimer that binds with sugars and other sweeteners. T1R3 also combines with T1R1 to form a heterodimer that binds with l-amino acids. These proteins are expressed not only in taste bud cells, but one or more of these T1Rs have also been identified in the nasal epithelium, gut, pancreas, liver, kidney, testes and brain in various mammalian species. Here we review current perspectives regarding the functional role of these receptors, concentrating on sweet taste and feeding. We also discuss behavioral findings suggesting that a glucose polymer mixture, Polycose, which rodents avidly prefer, appears to activate a receptor that does not depend on the combined expression of T1R2 and T1R3. In addition, although the T1Rs have been implicated as playing a role in glucose sensing, T1R2 knock-out (KO) and T1R3 KO mice display normal chow and fluid intake as well as normal body weight compared with same-sex littermate wild type (WT) controls. Moreover, regardless of whether they are fasted or not, these KO mice do not differ from their WT counterparts in their Polycose intake across a broad range of concentrations in 30-minute intake tests. The functional implications of these results and those in the literature are considered.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Yada Treesukosol; Alan C. Spector
Evidence in the literature supports the hypothesis that the T1R2+3 heterodimer binds to compounds that humans describe as sweet. Here, we assessed the necessity of the T1R2 and T1R3 subunits in the maintenance of normal taste sensitivity to carbohydrate stimuli. We trained and tested water-restricted T1R2 knockout (KO), T1R3 KO and their wild-type (WT) same-sex littermate controls in a two-response operant procedure to sample a fluid and differentially respond on the basis of whether the stimulus was water or a tastant. Correct responses were reinforced with water and incorrect responses were punished with a time-out. Testing was conducted with a modified descending method of limits procedure across daily 25-min sessions. Both KO groups displayed severely impaired performance and markedly decreased sensitivity when required to discriminate water from sucrose, glucose, or maltose. In contrast, when Polycose was tested, KO mice had normal EC(50) values for their psychometric functions, with some slight, but significant, impairment in performance. Sensitivity to NaCl did not differ between these mice and their WT controls. Our findings support the view that the T1R2+3 heterodimer is the principal receptor that mediates taste detection of natural sweeteners, but not of all carbohydrate stimuli. The combined presence of T1R2 and T1R3 appears unnecessary for the maintenance of relatively normal sensitivity to Polycose, at least in this task. Some detectability of sugars at high concentrations might be mediated by the putative polysaccharide taste receptor, the remaining T1R subunit forming either a homodimer or heteromer with another protein(s), or nontaste orosensory cues.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Yada Treesukosol; A. Brennan Paedae; Robert J. Contreras; Alan C. Spector
In rodents, at least two transduction mechanisms are involved in salt taste: 1) the sodium-selective epithelial sodium channel, blocked by topical amiloride administration, and 2) one or more amiloride-insensitive cation-nonselective pathways. Whereas electrophysiological evidence from the chorda tympani nerve (CT) has implicated the transient receptor potential vanilloid-1 (TRPV1) channel as a major component of amiloride-insensitive salt taste transduction, behavioral results have provided only equivocal support. Using a brief-access taste test, we examined generalization profiles of water-deprived C57BL/6J (WT) and TRPV1 knockout (KO) mice conditioned (via LiCl injection) to avoid 100 μM amiloride-prepared 0.25 M NaCl and tested with 0.25 M NaCl, sodium gluconate, KCl, NH(4)Cl, 6.625 mM citric acid, 0.15 mM quinine, and 0.5 M sucrose. Both LiCl-injected WT and TRPV1 KO groups learned to avoid NaCl+amiloride relative to controls, but their generalization profiles did not differ; LiCl-injected mice avoided the nonsodium salts and quinine suggesting that a TRPV1-independent pathway contributes to the taste quality of the amiloride-insensitive portion of the NaCl signal. Repeating the experiment but doubling all stimulus concentrations revealed a difference in generalization profiles between genotypes. While both LiCl-injected groups avoided the nonsodium salts and quinine, only WT mice avoided the sodium salts and citric acid. CT responses to these stimuli and a concentration series of NaCl and KCl with and without amiloride did not differ between genotypes. Thus, in our study, TRPV1 did not appear to contribute to sodium salt perception based on gustatory signals, at least in the CT, but may have contributed to the oral somatosensory features of sodium.
Chemical Senses | 2015
Alan C. Spector; Ginger D. Blonde; Ross P. Henderson; Yada Treesukosol; Paul Hendrick; Ryan Newsome; Fred H. Fletcher; Te Tang; James A. Donaldson
In recent years, to circumvent the interpretive limitations associated with intake tests commonly used to assess taste function in rodents, investigators have developed devices called gustometers to deliver small volumes of taste samples and measure immediate responses, thereby increasing confidence that the behavior of the animal is under orosensory control. Most of these gustometers can be used to measure unconditioned licking behavior to stimuli presented for short durations and/or can be used to train the animal to respond to various fluid stimuli differentially so as to obtain a reward and/or avoid punishment. Psychometric sensitivity and discrimination functions can thus be derived. Here, we describe a new gustometer design, successfully used in behavioral experiments, that was guided by our experience with an older version used for over 2 decades. The new computer-controlled gustometer features no dead space in stimulus delivery lines, effective cleaning of the licking substrate, and the ability to measure licking without passing electrical current through the animal. The parts and dimensions are detailed, and the benefits and limitations of certain design features are discussed. Schematics for key circuits are provided as supplemental information. Accordingly, it should be possible to fabricate this device in a fashion customized for ones needs.
Chemical Senses | 2011
Yada Treesukosol; Clare M. Mathes; Alan C. Spector
Evidence in the literature shows that in rodents, some taste-responsive neurons respond to both quinine and acid stimuli. Also, under certain circumstances, rodents display some degree of difficulty in discriminating quinine and acid stimuli. Here, C57BL/6J mice were trained and tested in a 2-response operant discrimination task. Mice had severe difficulty discriminating citric acid from quinine and 6-n-propylthiouracil (PROP) with performance slightly, but significantly, above chance. In contrast, mice were able to competently discriminate sucrose from citric acid, NaCl, quinine, and PROP. In another experiment, mice that were conditioned to avoid quinine by pairings with LiCl injections subsequently suppressed licking responses to quinine and citric acid but not to NaCl or sucrose in a brief-access test, relative to NaCl-injected control animals. However, mice that were conditioned to avoid citric acid did not display cross-generalization to quinine. These mice significantly suppressed licking only to citric acid, and to a much lesser extent NaCl, compared with controls. Collectively, the findings from these experiments suggest that in mice, citric acid and quinine share chemosensory features making discrimination difficult but are not perceptually identical.
PLOS ONE | 2014
Xueping Li; Yada Treesukosol; Alexander Moghadam; Megan Smith; Erica Ofeldt; Dejun Yang; Tianxia Li; Kellie L.K. Tamashiro; Pique Choi; Timothy H. Moran; Wanli W. Smith
Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference (“pre-obese”) and when SP1 mice were heavier (“obese”). At both time points, meal pattern analyses revealed that SP1 mice displayed higher daily chow intake than non-transgenic control mice. Furthermore, there was an increase in meal size in SP1 mice compared with NTg control mice at the obese stage. In contrast, there was no meal number change between SP1 and NTg control mice. In a brief-access taste procedure, both “pre-obese” and “obese“ SP1 mice displayed concentration-dependent licking across a sucrose concentration range similar to their NTg controls. However, at the pre-obese stage, SP1 mice initiated significantly more trials to sucrose across the testing sessions and licked more vigorously at the highest concentration presented, than the NTg counterparts. These group differences in responsiveness to sucrose were no longer apparent in obese SP1 mice. These results suggest that at the pre-obese stage, the increased trials to sucrose in the SP1 mice reflects increased appetitive behavior to sucrose that may be indicative of the behavioral changes that may contribute to hyperphagia and development of obesity in SP1 mice. These studies provide new insight into synphilin-1 contributions to energy homeostasis.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2007
Yada Treesukosol; Vijay Lyall; Gerard L. Heck; John A. DeSimone; Alan C. Spector
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
Yada Treesukosol; Ginger D. Blonde; Enshe Jiang; Dani Gonzalez; James C. Smith; Alan C. Spector