Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yadong Huang is active.

Publication


Featured researches published by Yadong Huang.


Plant Physiology | 2010

SUGAR-INSENSITIVE3, a RING E3 Ligase, Is a New Player in Plant Sugar Response

Yadong Huang; Chun Yao Li; Donna L. Pattison; William M. Gray; Sungjin Park; Susan I. Gibson

Sugars, such as sucrose and glucose, have been implicated in the regulation of diverse developmental events in plants and other organisms. We isolated an Arabidopsis (Arabidopsis thaliana) mutant, sugar-insensitive3 (sis3), that is resistant to the inhibitory effects of high concentrations of exogenous glucose and sucrose on early seedling development. In contrast to wild-type plants, sis3 mutants develop green, expanded cotyledons and true leaves when sown on medium containing high concentrations (e.g. 270 mm) of sucrose. Unlike some other sugar response mutants, sis3 exhibits wild-type responses to the inhibitory effects of abscisic acid and paclobutrazol, a gibberellic acid biosynthesis inhibitor, on seed germination. Map-based cloning revealed that SIS3 encodes a RING finger protein. Complementation of the sis3-2 mutant with a genomic SIS3 clone restored sugar sensitivity of sis3-2, confirming the identity of the SIS3 gene. Biochemical analyses demonstrated that SIS3 is functional in an in vitro ubiquitination assay and that the RING motif is sufficient for its activity. Our results indicate that SIS3 encodes a ubiquitin E3 ligase that is a positive regulator of sugar signaling during early seedling development.


BMC Plant Biology | 2008

Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis

Yadong Huang; Chun Yao Li; Kelly D Biddle; Susan I. Gibson

BackgroundThe levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways.ResultsA forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis) mutants, both of which are also involved in abscisic acid (ABA) biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination.ConclusionMutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in different abi3 mutants. Expression profiling revealed a potentially novel regulation of auxin metabolism and transport in an ABA deficient mutant, sis7-1/nced3-4/sto1-4.


Journal of Proteome Research | 2013

A versatile mass spectrometry-based method to both identify kinase client-relationships and characterize signaling network topology.

Nagib Ahsan; Yadong Huang; Alejandro Tovar-Méndez; Kirby N. Swatek; Jingfen Zhang; Jan A. Miernyk; Dong Xu; Jay J. Thelen

While more than a thousand protein kinases (PK) have been identified in the Arabidopsis thaliana genome, relatively little progress has been made toward identifying their individual client proteins. Herein we describe the use of a mass spectrometry-based in vitro phosphorylation strategy, termed Kinase Client assay (KiC assay), to study a targeted-aspect of signaling. A synthetic peptide library comprising 377 in vivo phosphorylation sequences from developing seed was screened using 71 recombinant A. thaliana PK. Among the initial results, we identified 23 proteins as putative clients of 17 PK. In one instance protein phosphatase inhibitor-2 (AtPPI-2) was phosphorylated at multiple-sites by three distinct PK, casein kinase1-like 10, AME3, and a Ser PK-like protein. To confirm this result, full-length recombinant AtPPI-2 was reconstituted with each of these PK. The results confirmed multiple distinct phosphorylation sites within this protein. Biochemical analyses indicate that AtPPI-2 inhibits type 1 protein phosphatase (TOPP) activity, and that the phosphorylated forms of AtPPI-2 are more potent inhibitors. Structural modeling revealed that phosphorylation of AtPPI-2 induces conformational changes that modulate TOPP binding.


Plant Journal | 2014

SIS8, a putative mitogen-activated protein kinase kinase kinase, regulates sugar-resistant seedling development in Arabidopsis

Yadong Huang; Chun Yao Li; Yiping Qi; Sungjin Park; Susan I. Gibson

Sugar signaling pathways have been evolutionarily conserved among eukaryotes and are postulated to help regulate plant growth, development and responses to environmental cues. Forward genetic screens have identified sugar signaling or response mutants. Here we report the identification and characterization of Arabidopsis thaliana sugar insensitive8 (sis8) mutants, which display a sugar-resistant seedling development phenotype. Unlike many other sugar insensitive mutants, sis8 mutants exhibit wild-type responses to the inhibitory effects of abscisic acid and paclobutrazol (an inhibitor of gibberellin biosynthesis) on seed germination. Positional cloning of the SIS8 gene revealed that it encodes a putative mitogen-activated protein kinase kinase kinase (MAPKKK; At1g73660). SIS8mRNA is expressed ubiquitously among Arabidopsis organs. A UDP-glucosyltransferase, UGT72E1 (At3g50740), was identified as an interacting partner of SIS8 based on a yeast two-hybrid screen and in planta bimolecular fluorescence complementation. Both SIS8-yellow fluorescent protein (YFP) and UGT72E1-YFP fusion proteins localize to the nucleus when transiently expressed in tobacco leaf cells. T-DNA insertions in At3g50740 cause a sugar-insensitive phenotype. These results indicate that SIS8, a putative MAPKKK, is a regulator of sugar response in Arabidopsis and interacts with a UDP-glucosyltransferase in the nucleus.


Analytical Biochemistry | 2010

A quantitative mass spectrometry-based approach for identifying protein kinase clients and quantifying kinase activity

Yadong Huang; Norma L. Houston; Alejandro Tovar-Méndez; Severin E. Stevenson; Jan A. Miernyk; Douglas D. Randall; Jay J. Thelen

The Homo sapiens and Arabidopsis thaliana genomes are believed to encode more than 500 and 1000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Here we describe a quantitative mass spectrometry (MS)-based approach for identifying kinase-client proteins. During method development, we used the dedicated kinase pyruvate dehydrogenase kinase (PDK) for the in vitro assays. As kinase substrate, we used synthetic peptide cocktails and, in the process, demonstrated that the assay is both sensitive and specific. The method is also useful for characterizing protein kinase-substrate kinetics once the peptide substrate is detected. Applying a label-free spectral counting method, the activity of PDK was determined using the peptide substrate YHGH(292)SMSDPGSTYR derived from the pyruvate dehydrogenase E1alpha subunit sequence. The utility of spectral counting was further validated by studying the negative effect of Met oxidation on peptide phosphorylation. We also measured the activity of the unrelated calcium-dependent protein kinase 3 (CPK3), demonstrating the utility of the method in protein kinase screening applications.


Theoretical and Applied Genetics | 2013

Haplotype diversity and population structure in cultivated and wild barley evaluated for Fusarium head blight responses

Yadong Huang; Benjamin P. Millett; Karen A. Beaubien; Stephanie K. Dahl; Brian J. Steffenson; Kevin P. Smith; Gary J. Muehlbauer

Fusarium head blight (FHB) is a threat to barley (Hordeum vulgare L.) production in many parts of the world. A number of barley accessions with partial resistance have been reported and used in mapping experiments to identify quantitative trait loci (QTL) associated with FHB resistance. Here, we present a set of barley germplasm that exhibits FHB resistance identified through screening a global collection of 23,255 wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) accessions. Seventy-eight accessions were classified as resistant or moderately resistant. The collection of FHB resistant accessions consists of 5, 27, 46 of winter, wild and spring barley, respectively. The population structure and genetic relationships of the germplasm were investigated with 1,727 Diversity Array Technology (DArT) markers. Multiple clustering analyses suggest the presence of four subpopulations. Within cultivated barley, substructure is largely centered on spike morphology and growth habit. Analysis of molecular variance indicated highly significant genetic variance among clusters and within clusters, suggesting that the FHB resistant sources have broad genetic diversity. The haplotype diversity was characterized with DArT markers associated with the four FHB QTLs on chromosome 2H bin8, 10 and 13 and 6H bin7. In general, the wild barley accessions had distinct haplotypes from those of cultivated barley. The haplotype of the resistant source Chevron was the most prevalent in all four QTL regions, followed by those of the resistant sources Fredrickson and CIho4196. These resistant QTL haplotypes were rare in the susceptible cultivars and accessions grown in the upper Midwest USA. Some two- and six-rowed accessions were identified with high FHB resistance, but contained distinct haplotypes at FHB QTLs from known resistance sources. These germplasm warrant further genetic studies and possible incorporation into barley breeding programs.


Journal of Experimental Botany | 2017

A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance in transgenic wheat

Xin Li; Herbert Michlmayr; Wolfgang Schweiger; Alexandra Malachová; Sanghyun Shin; Yadong Huang; Yanhong Dong; Gerlinde Wiesenberger; Susan P. McCormick; Marc Lemmens; Philipp Fruhmann; Christian Hametner; Franz Berthiller; Gerhard Adam; Gary J. Muehlbauer

Highlight Barley HvUGT13248 catalyzes conversion of nivalenol (NIV) to its non-toxic form 3-O-glucoside, and in transgenic wheat confers resistance to NIV-producing Fusarium graminearum


Methods of Molecular Biology | 2012

KiC Assay: A Quantitative Mass Spectrometry-Based Approach

Yadong Huang; Jay J. Thelen

Protein phosphorylation is one of the most important posttranslational modifications (PTMs) involved in the transduction of cellular signals. The number of kinases in eukaryotic genomes ranges from several hundred to over one thousand. And with rapidly evolving mass spectrometry (MS)-based approaches, thousands to tens of thousands of phosphorylation sites (phosphosites) have been reported from various eukaryotic organisms, from man to plants. In this relative context, few bona fide kinase-client relationships have been identified to date. To merge the gap between these phosphosites and the cognate kinases that beget these events, comparable large-scale methodologies are required. We describe in detail a MS-based method for identifying kinase-client interactions and quantifying kinase activity. We term this novel Kinase-Client assay, the KiC assay. The KiC assay relies upon the fact that substrate specificities of many kinases are largely determined by primary amino acid sequence or phosphorylation motifs, which consist of key amino acids surrounding the phosphorylation sites. The workflow for detecting kinase-substrate interactions includes four major steps: (1) preparation of purified kinases and synthetic peptide library, (2) in vitro kinase peptide library assay, (3) liquid chromatography (LC)-tandem MS (MS/MS) analysis, and (4) data processing and interpretation. Kinase activity is quantified with the KiC assay by monitoring spectral counts of phosphorylated and unphosphorylated peptides as the readout from LC-tandem mass spectrometry. The KiC assay can be applied as a discovery assay to screen kinases against a synthetic peptide library to find kinase-client relationships or as a targeted assay to characterize kinase kinetics.


Frontiers in Plant Science | 2018

QTL Mapping of Fusarium Head Blight and Correlated Agromorphological Traits in an Elite Barley Cultivar Rasmusson

Yadong Huang; Matthew Haas; Shane Heinen; Brian J. Steffenson; Kevin P. Smith; Gary J. Muehlbauer

Fusarium head blight (FHB) is an important fungal disease affecting the yield and quality of barley and other small grains. Developing and deploying resistant barley cultivars is an essential component of an integrated strategy for reducing the adverse effects of FHB. Genetic mapping studies have revealed that resistance to FHB and the accumulation of pathogen-produced mycotoxins are controlled by many quantitative trait loci (QTL) with minor effects and are highly influenced by plant morphological traits and environmental conditions. Some prior studies aimed at mapping FHB resistance have used populations derived from crossing a Swiss landrace Chevron with elite breeding lines/cultivars. Both Chevron and Peatland, a sib-line of Chevron, were used as founders in the University of Minnesota barley breeding program. To understand the native resistance that might be present in the Minnesota breeding materials, a cross of an elite cultivar with a susceptible unadapted genotype is required. Here, a mapping population of 93 recombinant inbred lines (RILs) was developed from a cross between a moderately susceptible elite cultivar ‘Rasmusson’ and a highly susceptible Japanese landrace PI 383933. This population was evaluated for FHB severity, deoxynivalenol (DON) accumulation and various agromorphological traits. Genotyping of the population was performed with the barley iSelect 9K SNP chip and 1,394 SNPs were used to develop a genetic map. FHB severity and DON accumulation were negatively correlated with plant height (HT) and spike length (SL), and positively correlated with spike density (SD). QTL analysis using composite interval mapping (CIM) identified the largest effect QTL associated with FHB and DON on the centromeric region of chromosome 7H, which was also associated with HT, SL, and SD. A minor FHB QTL and a minor DON QTL were detected on chromosome 6H and chromosome 3H, respectively, and the Rasmusson alleles contributed to resistance. The 3H DON QTL likely represents native resistance in elite germplasm as the marker haplotype of Rasmusson at this QTL is distinct from that of Chevron. This study highlights the relationship between FHB resistance/susceptibility and morphological traits and the need for breeders to account for morphology when developing FHB resistant genotypes.


Archive | 2016

Additional file 7: Table S6. of Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance

Yadong Huang; Lin Li; Kevin P. Smith; Gary J. Muehlbauer

Collaboration


Dive into the Yadong Huang's collaboration.

Top Co-Authors

Avatar

Chun Yao Li

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sungjin Park

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge