Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yadu B. Tewari is active.

Publication


Featured researches published by Yadu B. Tewari.


Bioinformatics | 2004

Thermodynamics of enzyme-catalyzed reactions---a database for quantitative biochemistry

Robert N. Goldberg; Yadu B. Tewari; Talapady N. Bhat

UNLABELLED The Thermodynamics of Enzyme-catalyzed Reactions Database (TECRDB) is a comprehensive collection of thermodynamic data on enzyme-catalyzed reactions. The data, which consist of apparent equilibrium constants and calorimetrically determined molar enthalpies of reaction, are the primary experimental results obtained from thermodynamic studies of biochemical reactions. The results from approximately 1000 published papers containing data on approximately 400 different enzyme-catalyzed reactions constitute the essential information in the database. The information is managed using Oracle and is available on the Web. AVAILABILITY http://xpdb.nist.gov/enzyme_thermodynamics/


Journal of Physical and Chemical Reference Data | 1989

Thermodynamic and Transport Properties of Carbohydrates and their Monophosphates: The Pentoses and Hexoses

Robert N. Goldberg; Yadu B. Tewari

This review contains recommended values of the thermodynamic and transport properties of the five and six membered ring carbohydrates and their phosphates in both the condensed and aqueous phases. Equilibrium data, enthalpies, heat capacities, and entropies have been collected from the literature. The accuracy of these data have been assessed, adjusted to 298.15 K and to a common standard state, and entered into a catalog of thermochemical reactions. The solution of this reaction catalog yields a set of recommended values for the formation properties of these substances. The volumetric data have also been critically evaluated. Recommended values are presented for standard state molar volumes and the temperature and pressure derivatives of the molar volume, i. e., the expansivity and the compressibility. The excess property data of aqueous solutions of these substances have been correlated to yield recommended values of the parameters of the virial expansion model used to represent the data. The transport ...


Journal of Physical and Chemical Reference Data | 1993

Thermodynamics of Enzyme‐Catalyzed Reactions: Part 1. Oxidoreductases

Robert N. Goldberg; Yadu B. Tewari; Donna Bell; Kari Fazio; Ellen Anderson

Equilibrium constants and enthalpy changes for reactions catalyzed by oxidoreductases have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it. The thermodynamic conventions pertinent to the tabulation of equilibrium data are discussed. A distinction is made between those thermodynamic quantities which pertain to the overall biochemical reaction and those which pertain to a reference reaction that involves specific species. The data from 205 references have been examined and evaluated. Chemical Abstract Service Registry Numbers have been assigned to the substances involved in these various reactions. There is a cross referenc...


Applied Biochemistry and Biotechnology | 1990

Thermodynamics of industrially-important, enzyme-catalyzed reactions

Yadu B. Tewari

The thermodynamics of 10 industrially-important, enzyme-catalyzed reactions are examined. The reactions discussed are: the conversions of penicillin G to 6-amino-penicillinic acid using the enzyme penicillin acylase; starch to glucose using amylases; glucose to fructose using glucose (xylose) isomerase; cellulose to glucose using cellulase; fumaric acid and ammonia to l-aspartic acid using l-aspartase; transcinnamic acid and ammonia to l-phenylalanine using l-phenylalanine ammonia lyase; l-histidine to urocanic acid and ammonia using l-histidine ammonia lyase; lactose to glucose and galactose using lactase; and the reactions catalyzed by amino acylases and proteases. The selection of these processes was based on the economic value of the products and their intrinsic industrial importance. The available thermodynamic properties, such as equilibrium constants, Gibbs energies (ΔGo), enthalphies (ΔHo), and heat capacity changes (ΔCpo) of these enzyme-catalyzed reactions, are reviewed and summarized. Recommendations are made for future research in this area.


Journal of Physical and Chemical Reference Data | 1999

Thermodynamics of Enzyme-Catalyzed Reactions: Part 7—2007 Update

Robert N. Goldberg; Yadu B. Tewari; Talapady N. Bhat

This review serves to update previously published evaluations of equilibrium constants and enthalpy changes for enzyme-catalyzed reactions. For each reaction, the following information is given: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used], the data and their evaluation, and, sometimes, commentary on the data and on any corrections which have been applied to the data or any calculations for which the data have been used. The review contains data from 119 references which have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is also a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.This review serves to update previously published evaluations of equilibrium constants and enthalpy changes for enzyme-catalyzed reactions. For each reaction, the following information is given: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used], the data and their evaluation, and, sometimes, commentary on the data and on any corrections which have been applied to the data or any calculations for which the data have been used. The review contains data from 119 references which have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is also a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.


Biophysical Chemistry | 1991

Thermodynamics of hydrolysis of oligosaccharides

Robert N. Goldberg; Donna Bell; Yadu B. Tewari; Michael A. McLaughlin

Microcalorimetry has been used to determine enthalpy changes for the hydrolysis of a series of oligosaccharides. High-pressure liquid chromatography was used to determine the extents of reaction and to check for any possible side reactions. The enzyme glucan 1,4-alpha-glucosidase was used to bring about the following hydrolysis reactions: (A) maltose(aq) + H2O(liq) = 2D-glucose(aq); (B) maltotriose(aq) + 2H2O(liq) = 3D-glucose(aq); (C) maltotetraose(aq) + 3H2O(liq) = 4D-glucose(aq); (D) maltopentaose(aq) + 4H2O(liq) = 5D-glucose(aq); (E) maltohexaose(aq) + 5H2O(liq) = 6D-glucose(aq); (F) maltoheptaose(aq) + 6H2O(liq) = 7D-glucose(aq); (G) amylose(aq) + nH2O(liq) = (n + 1) D-glucose(aq); and (H) panose(aq) + 2H2O(liq) = 3D-glucose(aq); (J) isomaltotriose(aq) + 2H2O(liq) = 3D-glucose(aq). The enzyme beta-fructofuranosidase was used for the reactions: (K) raffinose(aq) + H2O(liq) = alpha-D-melibiose(aq) + D-fructose(aq); and (L) stachyose(aq) + H2O(liq) = o-alpha-D-galactopyranosyl-(1----6)- alpha-o-D-galactopyranosyl-(1----6)-alpha-D-glucopyranose + D-fructose(aq). The results of the calorimetric measurements (298.15 K, 0.1 M sodium acetate buffer, pH 4.44-6.00) are: delta H0A = -4.55 +/- 0.10, delta H0B = -9.03 +/- 0.10, delta H0C = -13.79 +/- 0.15, delta H0D = -18.12 +/- 0.10, delta H0E = -22.40 +/- 0.15, delta H0F = -26.81 +/- 0.20, delta H0H = 1.46 +/- 0.40, delta H0J = 11.4 +/- 2.0, delta H0K = -15.25 +/- 0.20, and delta H0L = -14.93 +/- 0.20 kJ mol-1. The enthalpies of hydrolysis of two different samples of amylose were 1062 +/- 20 and 2719 +/- 100 kJ mol-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Physical and Chemical Reference Data | 1994

Thermodynamics of Enzyme‐Catalyzed Reactions: Part 4. Lyases

Robert N. Goldberg; Yadu B. Tewari

Equilibrium constants and enthalpy changes for reactions catalyzed by the hydrolase class of enzymes have been compiled. For each reaction the following information is given: The reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 145 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.


Biophysical Chemistry | 1991

Thermodynamics of hydrolysis of disaccharides. Lactulose, alpha-D-melibiose, palatinose, D-trehalose, D-turanose and 3-o-beta-D-galactopyranosyl-D-arabinose.

Yadu B. Tewari; Robert N. Goldberg

High-pressure liquid chromatography and microcalorimetry have been used to study the thermodynamics of the hydrolysis reactions of a series of disaccharides. The enzymes used to bring about the hydrolyses were: beta-galactosidase for lactulose and 3-o-beta-D-galactopyranosyl-D-arabinose; beta-glucosidase for alpha-D-melibiose; beta-amylase for D-trehalose; isomaltase for palatinose; and alpha-glucosidase for D-turanose. The buffer used was sodium acetate (0.02-0.10 M and pH 4.44-5.65). For the following processes at 298.15 K: lactulose(aq) + H2O(liq) = D-galactose(aq) + D-fructose(aq), K0 = 128 +/- 10 and delta H0 = 2.21 +/- 0.10 kJ mol-1; alpha-D-melibiose(aq) + H2O(liq) = D-galactose(aq) + D-glucose(aq), K0 = 123 +/- 42 and delta H0 = -0.88 +/- 0.50 kJ mol-1; palatinose(aq) + H2O(liq) = D-glucose(aq) + D-fructose(aq), delta H0 = -4.44 +/- 1.1 kJ mol-1; D-trehalose(aq) + H2O(liq) = 2 D-glucose(aq), K0 = 119 +/- 10 and delta H0 = 4.73 +/- 0.41 kJ mol-1; D-turanose(aq) + H2O(liq) = D-glucose(aq) + D-fructose(aq), delta H0 = -2.68 +/- 0.75 kJ mol-1; and 3-o-beta-D-galactopyranosyl-D-arabinose(aq) + H2O(liq) = D-galactose(aq) + D- arabinose(aq),0H0 = 107 +/- 10 and delta H0 = 2.97 +/- 0.10 kJ mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Physical and Chemical Reference Data | 1994

Thermodynamics of Enzyme‐Catalyzed Reactions: Part 2. Transferases

Robert N. Goldberg; Yadu B. Tewari

Equilibrium constants and enthalpy changes for reactions catalyzed by the transferase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 285 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.


Journal of Physical and Chemical Reference Data | 1995

Thermodynamics of Enzyme‐Catalyzed Reactions: Part 5. Isomerases and Ligases

Robert N. Goldberg; Yadu B. Tewari

Equilibrium constants and enthalpy changes for reactions catalyzed by the isomerase and ligase classes of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 176 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

Collaboration


Dive into the Yadu B. Tewari's collaboration.

Top Co-Authors

Avatar

Robert N. Goldberg

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Nand Kishore

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Stanley P. Wasik

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Martin P. Mayhew

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

David J. Vanderah

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Frederick P. Schwarz

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Marcia J. Holden

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Michele M. Schantz

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Talapady N. Bhat

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge