Yael Artzy-Randrup
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yael Artzy-Randrup.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Tal Dagan; Yael Artzy-Randrup; William Martin
Lateral gene transfer is an important mechanism of natural variation among prokaryotes, but the significance of its quantitative contribution to genome evolution is debated. Here, we report networks that capture both vertical and lateral components of evolutionary history among 539,723 genes distributed across 181 sequenced prokaryotic genomes. Partitioning of these networks by an eigenspectrum analysis identifies community structure in prokaryotic gene-sharing networks, the modules of which do not correspond to a strictly hierarchical prokaryotic classification. Our results indicate that, on average, at least 81 ± 15% of the genes in each genome studied were involved in lateral gene transfer at some point in their history, even though they can be vertically inherited after acquisition, uncovering a substantial cumulative effect of lateral gene transfer on longer evolutionary time scales.
Nature | 2010
Margarita V. Meer; Alexey S. Kondrashov; Yael Artzy-Randrup; Fyodor A. Kondrashov
A long-standing controversy in evolutionary biology is whether or not evolving lineages can cross valleys on the fitness landscape that correspond to low-fitness genotypes, which can eventually enable them to reach isolated fitness peaks. Here we study the fitness landscapes traversed by switches between different AU and GC Watson–Crick nucleotide pairs at complementary sites of mitochondrial transfer RNA stem regions in 83 mammalian species. We find that such Watson–Crick switches occur 30–40 times more slowly than pairs of neutral substitutions, and that alleles corresponding to GU and AC non-Watson–Crick intermediate states segregate within human populations at low frequencies, similar to those of non-synonymous alleles. Substitutions leading to a Watson–Crick switch are strongly correlated, especially in mitochondrial tRNAs encoded on the GT-nucleotide-rich strand of the mitochondrial genome. Using these data we estimate that a typical Watson–Crick switch involves crossing a fitness valley of a depth of about 10-3 or even about 10-2, with AC intermediates being slightly more deleterious than GU intermediates. This compensatory evolution must proceed through rare intermediate variants that never reach fixation. The ubiquitous nature of compensatory evolution in mammalian mitochondrial tRNAs and other molecules implies that simultaneous fixation of two alleles that are individually deleterious may be a common phenomenon at the molecular level.
PLOS ONE | 2009
Assaf Zvuloni; Yael Artzy-Randrup; Lewi Stone; Esti Kramarsky-Winter; Roy Barkan; Yossi Loya
Background Transmission mechanisms of black-band disease (BBD) in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease. Methodology/Principal Findings 3,175 susceptible and infected corals were mapped over an area of 10×10 m in Eilat (northern Gulf of Aqaba, Red Sea) and the distribution of the disease was examined monthly throughout almost two full disease cycles (June 2006–December 2007). Spatial and spatio-temporal analyses were applied to infer the transmission pattern of the disease and to calculate key epidemiological parameters such as (basic reproduction number). We show that the prevalence of the disease is strongly associated with high water temperature. When water temperatures rise and disease prevalence increases, infected corals exhibit aggregated distributions on small spatial scales of up to 1.9 m. Additionally, newly-infected corals clearly appear in proximity to existing infected corals and in a few cases in direct contact with them. We also present and test a model of water-borne infection, indicating that the likelihood of a susceptible coral becoming infected is defined by its spatial location and by the relative spatial distribution of nearby infected corals found in the site. Conclusions/Significance Our results provide evidence that local transmission, but not necessarily by direct contact, is likely to be an important factor in the spread of the disease over the tested spatial scale. In the absence of potential disease vectors with limited mobility (e.g., snails, fireworms) in the studied site, water-borne infection is likely to be a significant transmission mechanism of BBD. Our suggested model of water-borne transmission supports this hypothesis. The spatio-temporal analysis also points out that infected corals surviving a disease season appear to play a major role in the re-introduction of the disease to the coral community in the following season.
PLOS Computational Biology | 2010
Yael Artzy-Randrup; Lewi Stone
Synthesising the relationships between complexity, connectivity, and the stability of large biological systems has been a longstanding fundamental quest in theoretical biology and ecology. With the many exciting developments in modern network theory, interest in these issues has recently come to the forefront in a range of multidisciplinary areas. Here we outline a new theoretical analysis specifically relevant for the study of ecological metapopulations focusing primarily on marine systems, where subpopulations are generally connected via larval dispersal. Our work determines the qualitative and quantitative conditions by which dispersal and network structure control the persistence of a set of age-structured patch populations. Mathematical modelling combined with a graph theoretic analysis demonstrates that persistence depends crucially on the topology of cycles in the dispersal network which tend to enhance the effect of larvae “returning home.” Our method clarifies the impact directly due to network structure, but this almost by definition can only be achieved by examining the simplified case in which patches are identical; an assumption that we later relax. The methodology identifies critical migration routes, whose presence are vital to overall stability, and therefore should have high conservation priority. In contrast, “lonely links,” or links in the network that do not participate in a cyclical component, have no impact on persistence and thus have low conservation priority. A number of other intriguing criteria for persistence are derived. Our modelling framework reveals new insights regarding the determinants of persistence, stability, and thresholds in complex metapopulations. In particular, while theoretical arguments have, in the past, suggested that increasing connectivity is a destabilizing feature in complex systems, this is not evident in metapopulation networks where connectivity, cycles, coherency, and heterogeneity all tend to enhance persistence. The results should be of interest for many other scientific contexts that make use of network theory.
eLife | 2012
Yael Artzy-Randrup; Mary M. Rorick; Karen P. Day; Donald Chen; Andrew P. Dobson; Mercedes Pascual
The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI: http://dx.doi.org/10.7554/eLife.00093.001
PLOS Computational Biology | 2015
Assaf Zvuloni; Yael Artzy-Randrup; Guy Katriel; Yossi Loya; Lewi Stone
Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for the highly seasonal nature of annual WPD outbreaks.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Yael Artzy-Randrup; Andrew P. Dobson; Mercedes Pascual
Significance Conventional wisdom assumes that integrating different malaria intervention approaches will always act synergistically for malaria control. The complex and transient nature of malaria immunity significantly underlies this optimistic assumption. Here we use a fully parameterized mathematical model to investigate the interaction of treated bednets with vaccination in the population dynamics of malaria. We demonstrate that mixed interventions create nonlinear responses that modify the way in which humans acquire clinical protection from malaria infection. Our results indicate that vaccines will not necessarily provide a straightforward solution to malaria control, and that future programs need to consider both synergistic and antagonistic interactions between vaccines and other control measures. It is extremely likely that the malaria vaccines currently in development will be used in conjunction with treated bednets and other forms of malaria control. The interaction of different intervention methods is at present poorly understood in a disease such as malaria where immunity is more complex than for other pathogens that have been successfully controlled by vaccination. Here we develop a general mathematical model of malaria transmission to examine the interaction between vaccination and bednets. Counterintuitively, we find that the frailty of malaria immunity will potentially cause both synergistic and antagonistic interactions between vaccination and the use of bednets. We explore the conditions that create these tensions, and outline strategies that minimize their detrimental impact. Our analysis specifically considers the three leading vaccine classes currently in development: preerythrocytic (PEV), blood stage (BSV), and transmission blocking (TBV). We find that the combination of BSV with treated bednets can lead to increased morbidity with no added value in terms of elimination; the interaction is clearly antagonistic. In contrast, there is strong synergy between PEV and treated bednets that may facilitate elimination, although transient stages are likely to increase morbidity. The combination of TBV with treated bednets is synergistic, lowering both morbidity and elimination thresholds. Our results suggest that vaccines will not provide a straightforward solution to malaria control, and that future programs need to consider the synergistic and antagonistic interactions between vaccines and treated bednets.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Karen P. Day; Yael Artzy-Randrup; Kathryn E. Tiedje; Virginie Rougeron; Donald Chen; Thomas S. Rask; Mary M. Rorick; Florence Migot-Nabias; Philippe Deloron; Adrian J. F. Luty; Mercedes Pascual
Significance This paper aims to discover how diverse malaria parasites are in children from an African village. DNA sequencing shows that they are highly diverse with respect to the genes encoding the surface coat. Indeed, every child has a malaria infection with a different set of these genes. Importantly, this paper shows by computational methods that the pattern of this diversity is not random but structured to enhance the parasites’ chance to evade host immunity and has implications for the success of malaria control programs. Existing theory on competition for hosts between pathogen strains has proposed that immune selection can lead to the maintenance of strain structure consisting of discrete, weakly overlapping antigenic repertoires. This prediction of strain theory has conceptual overlap with fundamental ideas in ecology on niche partitioning and limiting similarity between coexisting species in an ecosystem, which oppose the hypothesis of neutral coexistence. For Plasmodium falciparum, strain theory has been specifically proposed in relation to the major surface antigen of the blood stage, known as PfEMP1 and encoded by the multicopy multigene family known as the var genes. Deep sampling of the DBLα domain of var genes in the local population of Bakoumba, West Africa, was completed to define whether patterns of repertoire overlap support a role of immune selection under the opposing force of high outcrossing, a characteristic of areas of intense malaria transmission. Using a 454 high-throughput sequencing protocol, we report extremely high diversity of the DBLα domain and a large parasite population with DBLα repertoires structured into nonrandom patterns of overlap. Such population structure, significant for the high diversity of var genes that compose it at a local level, supports the existence of “strains” characterized by distinct var gene repertoires. Nonneutral, frequency-dependent competition would be at play and could underlie these patterns. With a computational experiment that simulates an intervention similar to mass drug administration, we argue that the observed repertoire structure matters for the antigenic var diversity of the parasite population remaining after intervention.
Nature Communications | 2018
Qixin He; Shai Pilosof; Kathryn E. Tiedje; Shazia Ruybal-Pesántez; Yael Artzy-Randrup; Edward B. Baskerville; Karen P. Day; Mercedes Pascual
Pathogens compete for hosts through patterns of cross-protection conferred by immune responses to antigens. In Plasmodium falciparum malaria, the var multigene family encoding for the major blood-stage antigen PfEMP1 has evolved enormous genetic diversity through ectopic recombination and mutation. With 50–60 var genes per genome, it is unclear whether immune selection can act as a dominant force in structuring var repertoires of local populations. The combinatorial complexity of the var system remains beyond the reach of existing strain theory and previous evidence for non-random structure cannot demonstrate immune selection without comparison with neutral models. We develop two neutral models that encompass malaria epidemiology but exclude competitive interactions between parasites. These models, combined with networks of genetic similarity, reveal non-neutral strain structure in both simulated systems and an extensively sampled population in Ghana. The unique population structure we identify underlies the large transmission reservoir characteristic of highly endemic regions in Africa.Plasmodium has evolved high genetic diversity in var genes, which encode for the major blood-stage antigen. Here, He et al. show how immune selection shapes the var gene repertoire in both simulated systems and a population in Ghana, by using neutral models and genetic similarity networks.
Ecology and Evolution | 2018
Mary M. Rorick; Yael Artzy-Randrup; Shazia Ruybal-Pesántez; Kathryn E. Tiedje; Thomas S. Rask; Abraham Oduro; Anita Ghansah; Kwadwo A. Koram; Karen P. Day; Mercedes Pascual
Abstract The concept of niche partitioning has received considerable theoretical attention at the interface of ecology and evolution of infectious diseases. Strain theory postulates that pathogen populations can be structured into distinct nonoverlapping strains by frequency‐dependent selection in response to intraspecific competition for host immune space. The malaria parasite Plasmodium falciparum presents an opportunity to investigate this phenomenon in nature, under conditions of high recombination rate and extensive antigenic diversity. The parasites major blood‐stage antigen, Pf EMP1, is encoded by the hyperdiverse var genes. With a dataset that includes thousands of var DBLα sequence types sampled from asymptomatic cases within an area of high endemicity in Ghana, we address how var diversity is distributed within isolates and compare this to the distribution of microsatellite allelic diversity within isolates to test whether antigenic and neutral regions of the genome are structured differently. With respect to var DBLα sequence types, we find that on average isolates exhibit significantly lower overlap than expected randomly, but that there also exists frequent pairs of isolates that are highly related. Furthermore, the linkage network of var DBLα sequence types reveals a pattern of nonrandom modularity unique to these antigenic genes, and we find that modules of highly linked DBLα types are not explainable by neutral forces related to var recombination constraints, microsatellite diversity, sampling location, host age, or multiplicity of infection. These findings of reduced overlap and modularity among the var antigenic genes are consistent with a role for immune selection as proposed by strain theory. Identifying the evolutionary and ecological dynamics that are responsible for the nonrandom structure in P. falciparum antigenic diversity is important for designing effective intervention in endemic areas.