Yael Yaniv
Technion – Israel Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yael Yaniv.
Annals of the New York Academy of Sciences | 2005
Carmit Levy; Henk E.D.J. ter Keurs; Yael Yaniv; Amir Landesberg
Abstract: The Frank‐Starling Law, Fenn Effect, and Sugas suggestions of cardiac muscle constant contractile efficiency establish the dependence of cardiac mechanics and energetics on the loading conditions. Consistent with these observations, this review suggests that the sarcomere control of contraction consists of two dominant feedbacks: (1) a cooperativity mechanism (positive feedback), whereby the number of force‐generating cross‐bridges (XBs) determines the affinity of calcium binding to the troponin regulatory protein; and (2) a mechanical (negative) feedback, whereby the filament shortening velocity affects the rate of XB turnover from the force to the non‐force generating conformation. The study explains the roles of these feedbacks in providing the adaptive control of energy consumption by the loading conditions and validates the dependence of the cooperativity mechanism on the number of strong XBs. The cooperativity mechanism regulates XB recruitment. It explains the cardiac force‐length calcium relationship, the related Frank‐Starling Law of the heart, and the adaptive control of new XB recruitment and the associated adenosine triphosphate (ATP) consumption. The mechanical feedback explains the force‐velocity relationship and the constant and high‐contractile efficiency. These mechanisms were validated by testing the force responses to large amplitude (100 nm/sarcomere) sarcomere length (SL) oscillations, in intact tetanized trabeculae (utilizing 30 μM cyclopiazonic). The force responses to large‐length oscillations lag behind the imposed oscillations at low extracellular calcium concentration ([Ca2+]0) and slow frequencies (<4 Hz, 25°C), yielding counterclockwise hystereses in the force‐length plane. The force was higher during shortening than during lengthening. The area within these hystereses corresponds to the external work generated from new XB recruitment during each oscillation, and it is determined by the delay in the force response. Characterization of the delayed response and its dependence on the SL, force, and calcium allows identification of the regulation of XB recruitment. The direct dependence of the phase on force indicates that XB recruitment is determined directly by the force (i.e., the number of strong XBs) and indirectly by SL or calcium. The suggested feedbacks determine cardiac energetics: 1) the constant and high contractile efficiency is an intrinsic property of the single XB, due to the mechanical feedback; and 2) the XBs are the myocyte sensors that modulate XB recruitment in response to length and load changes through the cooperativity mechanism.
Journal of Molecular and Cellular Cardiology | 2015
Yael Yaniv; Ambhighainath Ganesan; Dongmei Yang; Bruce D. Ziman; Alexey E. Lyashkov; Andre Levchenko; Jin Zhang; Edward G. Lakatta
cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into a mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca(2+)-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate.
Frontiers in Physiology | 2016
Joachim Behar; Ambhighainath Ganesan; Jin Zhang; Yael Yaniv
Sinoatrial nodal cells (SANCs) generate spontaneous action potentials (APs) that control the cardiac rate. The brain modulates SANC automaticity, via the autonomic nervous system, by stimulating membrane receptors that activate (adrenergic) or inactivate (cholinergic) adenylyl cyclase (AC). However, these opposing afferents are not simply additive. We showed that activation of adrenergic signaling increases AC-cAMP/PKA signaling, which mediates the increase in the SANC AP firing rate (i.e., positive chronotropic modulation). However, there is a limited understanding of the underlying internal pacemaker mechanisms involved in the crosstalk between cholinergic receptors and the decrease in the SANC AP firing rate (i.e., negative chronotropic modulation). We hypothesize that changes in AC-cAMP/PKA activity are crucial for mediating either decrease or increase in the AP firing rate and that the change in rate is due to both internal and membrane mechanisms. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, PKA activity and AP firing rate were tightly linked in response to either adrenergic receptor stimulation (by isoproterenol, ISO) or cholinergic stimulation (by carbachol, CCh). To identify the main molecular targets that mediate between PKA signaling and pacemaker function, we developed a mechanistic computational model. The model includes a description of autonomic-nervous receptors, post- translation signaling cascades, membrane molecules, and internal pacemaker mechanisms. Yielding results similar to those of the experiments, the model simulations faithfully reproduce the changes in AP firing rate in response to CCh or ISO or a combination of both (i.e., accentuated antagonism). Eliminating AC-cAMP-PKA signaling abolished the core effect of autonomic receptor stimulation on the AP firing rate. Specifically, disabling the phospholamban modulation of the SERCA activity resulted in a significantly reduced effect of CCh and a failure to increase the AP firing rate under ISO stimulation. Directly activating internal pacemaker mechanisms led to a similar extent of changes in the AP firing rate with respect to brain receptor stimulation. Thus, Ca2+ and cAMP/PKA-dependent phosphorylation limits the rate and magnitude of chronotropic changes in the spontaneous AP firing rate.
Aging Cell | 2016
Yael Yaniv; Ismayil Ahmet; Kenta Tsutsui; Joachim Behar; Jack M. Moen; Yosuke Okamoto; Toni Rose Guiriba; Jie Liu; Rostislav Bychkov; Edward G. Lakatta
We aimed to determine how age‐associated changes in mechanisms extrinsic and intrinsic to pacemaker cells relate to basal beating interval variability (BIV) reduction in vivo. Beating intervals (BIs) were measured in aged (23–25 months) and adult (3–4 months) C57BL/6 male mice (i) via ECG in vivo during light anesthesia in the basal state, or in the presence of 0.5 mg mL−1 atropine + 1 mg mL−1 propranolol (in vivo intrinsic conditions), and (ii) via a surface electrogram, in intact isolated pacemaker tissue. BIV was quantified in both time and frequency domains using linear and nonlinear indices. Although the average basal BI did not significantly change with age under intrinsic conditions in vivo and in the intact isolated pacemaker tissue, the average BI was prolonged in advanced age. In vivo basal BIV indices were found to be reduced with age, but this reduction diminished in the intrinsic state. However, in pacemaker tissue BIV indices increased in advanced age vs. adults. In the isolated pacemaker tissue, the sensitivity of the average BI and BIV in response to autonomic receptor stimulation or activation of mechanisms intrinsic to pacemaker cells by broad‐spectrum phosphodiesterase inhibition declined in advanced age. Thus, changes in mechanisms intrinsic to pacemaker cells increase the average BIs and BIV in the mice of advanced age. Autonomic neural input to pacemaker tissue compensates for failure of molecular intrinsic mechanisms to preserve average BI. But this compensation reduces the BIV due to both the imbalance of autonomic neural input to the pacemaker cells and altered pacemaker cell responses to neural input.
Annals of the New York Academy of Sciences | 2008
Yael Yaniv; William C. Stanley; Gerald M. Saidel; Marco E. Cabrera; Amir Landesberg
The heart adapts the rate of mitochondrial ATP production to energy demand without noticeable changes in the concentration of ATP, ADP and Pi, even for large transitions between different workloads. We suggest that the changes in demand modulate the cytosolic Ca2+ concentration that changes mitochondrial Ca2+ to regulate ATP production. Thus, the rate of ATP production by the mitochondria is coupled to the rate of ATP consumption by the sarcomere cross‐bridges (XBs). An integrated model was developed to couple cardiac metabolism and mitochondrial ATP production with the regulation of Ca2+ transient and ATP consumption by the sarcomere. The model includes two interrelated systems that run simultaneously utilizing two different integration steps: (1) The faster system describes the control of excitation contraction coupling with fast cytosolic Ca2+ transients, twitch mechanical contractions, and associated fluctuations in the mitochondrial Ca2+. (2) A slower system simulates the metabolic system, which consists of three different compartments: blood, cytosol, and mitochondria. The basic elements of the model are dynamic mass balances in the different compartments. Cytosolic Ca2+ handling is determined by four organelles: sarcolemmal Ca2+ influx and efflux; sarcoplasmic reticulum (SR) Ca2+ release and sequestration (SR); binding and dissociation from sarcomeric regulatory troponin complexes; and mitochondrial Ca2+ flows. Mitochondrial Ca2+ flows are determined by the Ca2+ uniporter and the mitochondrial Na+Ca2+ exchanger. The cytosolic Ca2+ determines the rate of ATP consumption by the sarcomere. Ca2+ binding to troponin regulates the rate of XBs recruitment and force development. The mitochondrial Ca2+ concentration determines the pyruvate dehydrogenase activity and the rate of ATP production by the F1‐F0 ATPase. The workload modulates the cytosolic Ca2+ concentration through feedback loops. The preload and afterload affect the number of strong XBs. The number of strong XBs determines the affinity of troponin for Ca2+, which alters the cytosolic Ca2+ transient. Model simulations quantify the role of Ca2+ in simultaneously controlling the power of contraction and the rate of ATP production. It explains the established empirical observation that significant changes in the metabolic fluxes can occur without significant changes in the key nucleotide (ATP and ADP) concentrations. Quantitative investigations of the mechanisms underlying the cardiac control of biochemical to mechanical energy conversion may lead to novel therapeutic modalities for the ischemic and failing myocardium.
Journal of Biochemistry and Molecular Biology | 2015
Yael Yaniv; Edward G. Lakatta
Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the hearts beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart’s pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system. [BMB Reports 2015; 48(12): 677-684]
Frontiers in Physiology | 2015
Yael Yaniv; Kenta Tsutsui; Edward G. Lakatta
The hearts regular electrical activity is initiated by specialized cardiac pacemaker cells residing in the sinoatrial node. The rate and rhythm of spontaneous action potential firing of sinoatrial node cells are regulated by stochastic mechanisms that determine the level of coupling of chemical to electrical clocks within cardiac pacemaker cells. This coupled-clock system is modulated by autonomic signaling from the brain via neurotransmitter release from the vagus and sympathetic nerves. Abnormalities in brain-heart clock connections or in any molecular clock activity within pacemaker cells lead to abnormalities in the beating rate and rhythm of the pacemaker tissue that initiates the cardiac impulse. Dysfunction of pacemaker tissue can lead to tachy-brady heart rate alternation or exit block that leads to long atrial pauses and increases susceptibility to other cardiac arrhythmia. Here we review evidence for the idea that disturbances in the intrinsic components of pacemaker cells may be implemented in arrhythmia induction in the heart.
Annals of Biomedical Engineering | 2006
Yael Yaniv; Raphael Sivan; Amir Landesberg
A model of the sarcomeric control of contraction at various loading conditions has to maintain three cardinal features: stability, controllability (where the output can be controlled by the input), and observability (where the output reflects the effects of all the state variables). The suggested model of the sarcomere couples calcium kinetics with cross-bridge (XB) cycling and comprises two feedback mechanisms: (i) the cooperativity, whereby the number of force-generating (strong) XBs determines calcium affinity, regulates XB recruitment, and (ii) the mechanical feedback, whereby shortening velocity determines XBs cycling rate, controls the XBs contractile efficiency. The sarcomere is described by a set of four first-order nonlinear differential equations, utilizing the Matlabs Simulink software. Small oscillatory input was imposed when the state variables trajectories reached a steady state. The linearized state-space representations of the model were calculated for various initial sarcomere lengths. The analysis of the state-space representation validates the controllability and observability of the model. The model has four poles: three at the left side of the complex plane and one integrating pole at the origin. Therefore, the system is marginally stable. The Laplace transform confirms that the state representation is minimal and is therefore observable and controllable. The extension of the model to a multi-sarcomere lattice was explored, and the effects of inhomogeneity and nonuniform activation were described.
Annals of the New York Academy of Sciences | 2004
Amir Landesberg; Carmit Levy; Yael Yaniv; Samuel Sideman
Abstract: This study explores the mechanisms dominating the regulation of the biochemical energy consumption and the mechanical output of the actin‐myosin motor units, the crossbridges (Xbs), in the cardiac sarcomere. Our analytical model, which couples Xbs cycling dynamics with the kinetics of the free Ca2+ binding to troponin‐C (Tn‐C), includes two feedback mechanisms: (1) a cooperativity mechanism, whereby the amount of force generating Xbs determines the affinity of calcium binding to the regulatory protein and the force‐length relationship (FLR); and (2) a mechanical (negative) feedback, whereby the filament shortening velocity affects the rate of Xb turnover from the force‐ to the nonforce‐generating state, allows the analytical solution for the muscle force‐velocity relationship (FVR), and the linear relation between energy consumption and the generated mechanical energy. Our experimental and analytical studies of the force response to large‐amplitude sarcomere length (SL) oscillations at various frequencies and constant [Ca2+] in the isolated tetanized rat trabeculae reveal that the generated force depends on the history of contraction and establishes the validity of these two feedbacks. The cooperativity mechanism generates counterclockwise (CCW) hystereses, where the muscle generates external work; while at higher frequencies the mechanical feedback produces clockwise (CW) hystereses, where the muscle behaves as a damper. The cooperativity provides the adaptive control of the cardiac response to short‐term changes in the load by modulating Xb recruitment. The cardiac efficiency, defined as the ratio of the generated mechanical energy (i.e., external work and pseudo‐potential energy) to the sarcomere energy consumption, is determined by the mechanical feedback, reflecting an inherent property of the single Xb. The efficiency is thus independent of the number of strong Xbs and is constant and load independent.
The Journal of General Physiology | 2017
Joachim Behar; Yael Yaniv
Age-related deterioration of pacemaker function has been documented in mammals, including humans. In aged isolated sinoatrial node tissues and cells, reduction in the spontaneous action potential (AP) firing rate was associated with deterioration of intracellular and membrane mechanisms; however, their relative contribution to age-associated deficient pacemaker function is not known. Interestingly, pharmacological interventions that increase posttranslation modification signaling activities can restore the basal and maximal AP firing rate, but the identities of the protein targets responsible for AP firing rate restoration are not known. Here, we developed a numerical model that simulates the function of a single mouse pacemaker cell. In addition to describing membrane and intracellular mechanisms, the model includes descriptions of autonomic receptor activation pathways and posttranslation modification signaling cascades. The numerical model shows that age-related deterioration of pacemaker function is related to impaired intracellular and membrane mechanisms: HCN4, T-type channels, and phospholamban functions, as well as the node connecting these mechanisms, i.e., intracellular Ca2+ and posttranslation modification signaling. To explain the restored maximal beating rate in response to maximal phosphodiesterase (PDE) inhibition, autonomic receptor stimulation, or infused cyclic adenosine monophosphate (cAMP), the model predicts that phospholamban phosphorylation by protein kinase A (PKA) and HCN4 sensitivity to cAMP are altered in advanced age. Moreover, alteration in PKA and cAMP sensitivity can also explain age-reduced sensitivity to PDE inhibition and autonomic receptor stimulation. Finally, the numerical model suggests two pharmacological approaches and one gene manipulation method to restore the basal beating rate of aged pacemaker cells to that of normal adult cells. In conclusion, our numerical model shows that impaired membrane and intracellular mechanisms and the nodes that couple them can lead to deteriorated pacemaker function. By increasing posttranslation modification signaling, the deteriorated basal and maximal age-associated beating rate can be restored to adult levels.