Yagnesh Umrania
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yagnesh Umrania.
Molecular Psychiatry | 2010
Paul C. Guest; Lan Wang; Laura W. Harris; K Burling; Yishai Levin; Agnes Ernst; Matthew T. Wayland; Yagnesh Umrania; Marlis Herberth; Dagmar Koethe; J M van Beveren; Matthias Rothermundt; George McAllister; F M Leweke; Johann Steiner; Sabine Bahn
Increased levels of circulating insulin-related peptides in first-onset, antipsychotic naive schizophrenia patients
Journal of Proteome Research | 2009
Dan Ma; Man K. Chan; Helen E. Lockstone; Pietsch; Declan N.C. Jones; Jackie Cilia; Hill; Melanie J. Robbins; Isabel Benzel; Yagnesh Umrania; Paul C. Guest; Yishai Levin; Peter R. Maycox; Sabine Bahn
Haloperidol and olanzapine are widely used antipsychotic drugs in the treatment of schizophrenia and other psychotic disorders. Despite extensive research efforts within the biopharmaceutical industry and academia, the exact molecular mechanisms of their action remain largely unknown. Since the response of patients to existing medications can be variable and often includes severe side effects, it is critical to increase our knowledge on their mechanism of action to guide clinical usage and new drug development. In this study, we have employed the label-free liquid chromatography tandem mass spectrometry (LC-MSE) to identify differentially expressed proteins in rat frontal cortex following subchronic treatment with haloperidol or olanzapine. Subcellular fractionation was performed to increased proteomic coverage and provided insight into the subcellular location involved in the mechanism of drug action. LC-MSE profiling identified 531 and 741 annotated proteins in fractions I (cytoplasmic-) and II (membrane enriched-) in two drug treatments. Fifty-nine of these proteins were altered significantly by haloperidol treatment, 74 by olanzapine and 21 were common to both treatments. Pathway analysis revealed that both drugs altered similar classes of proteins associated with cellular assembly/organization, nervous system development/function (particularly presynaptic function) and neurological disorders, which indicate a common mechanism of action. The top affected canonical signaling pathways differed between the two treatments. The haloperidol data set showed a stronger association with Huntingtons disease signaling, while olanzapine treatment showed stronger effects on glycolysis/gluconeogenesis. This could either relate to a difference in clinical efficacy or side effect profile of the two compounds. The results were consistent with the findings reported previously by targeted studies, demonstrating the validity of this approach. However, we have also identified many novel proteins which have not been found previously to be associated with these drugs. Further study of these proteins could provide new insights into the etiology of the disease or the mechanism of antipsychotic medications.
Proteomics | 2011
Divya Krishnamurthy; Yishai Levin; Laura W. Harris; Yagnesh Umrania; Sabine Bahn; Paul C. Guest
Studies of pituitary‐related disorders would be facilitated by enhanced knowledge of the pituitary proteome. To construct a data set of human pituitary proteins, separate protein extracts were prepared from 15 post‐mortem pituitaries and analyzed by data independent label‐free nanoflow liquid chromatography mass spectrometry (nLC‐MSE). The detected mass/time features were aligned and quantified using the Rosetta Elucidator® system and annotated using results from ProteinLynx Global Server. The resulting data set comprised 1007 unique proteins, with stringent identification by a minimum of two distinct peptides. These proteins consisted predominantly of enzymes, transporters, transcription/translation factors, cell structure and secreted proteins.
Psychoneuroendocrinology | 2013
Laura W. Harris; Paul C. Guest; Matthew T. Wayland; Yagnesh Umrania; Divya Krishnamurthy; Hassan Rahmoune; Sabine Bahn
Despite decades of research, the pathophysiology and aetiology of schizophrenia remains incompletely understood. The disorder is frequently accompanied by metabolic symptoms including dyslipidaemia, hyperinsulinaemia, type 2 diabetes and obesity. These symptoms are a common side effect of currently available antipsychotic medications. However, reports of metabolic dysfunction in schizophrenia predate the antipsychotic era and have also been observed in first onset patients prior to antipsychotic treatment. Here, we review the evidence for abnormalities in metabolism in schizophrenia patients, both in the central nervous system and periphery. Molecular analysis of post mortem brain tissue has pointed towards alterations in glucose metabolism and insulin signalling pathways, and blood-based molecular profiling analyses have demonstrated hyperinsulinaemia and abnormalities in secretion of insulin and co-released factors at first presentation of symptoms. Nonetheless, such features are not observed for all subjects with the disorder and not all individuals with such abnormalities suffer the symptoms of schizophrenia. One interpretation of these data is the presence of an underlying metabolic vulnerability in a subset of individuals which interacts with environmental or genetic factors to produce the overt symptoms of the disorder. Further investigation of metabolic aspects of schizophrenia may prove critical for diagnosis, improvement of existing treatment based on patient stratification/personalised medicine strategies and development of novel antipsychotic agents.
International Review of Neurobiology | 2011
Man K. Chan; Paul C. Guest; Yishai Levin; Yagnesh Umrania; Emanuel Schwarz; Sabine Bahn; Hassan Rahmoune
This chapter has carried out a review of the literature and combined this with the results of in-house studies to identify candidate blood-based biomarkers for schizophrenia and antipsychotic drug response. Literature searches retrieved 185 publications describing a total of 273 schizophrenia biomarkers identified in serum and/or plasma. Examination of seven in-house multicenter studies resulted in the identification of 137 serum/plasma biomarkers. Taken together, the findings suggested an ongoing immunological and inflammatory process in schizophrenia. This was accompanied by altered cortisol levels which suggested activated stress response and altered hypothalamic-pituitary-adrenal axis function in these patients. The authors conclude that such biomarkers may prove useful as additional parameters for characterizing specific immune and/or metabolic or hormonal subsystems in schizophrenia and might, therefore, facilitate the development of future patient stratification and personalized medicine strategies.
Molecular & Cellular Proteomics | 2010
Tammy M. K. Cheng; Yu-En Lu; Paul C. Guest; Hassan Rahmoune; Laura W. Harris; Lan Wang; Dan Ma; Victoria Stelzhammer; Yagnesh Umrania; Matthew T. Wayland; Pietro Liò; Sabine Bahn
The search for biomarkers to diagnose psychiatric disorders such as schizophrenia has been underway for decades. Many molecular profiling studies in this field have focused on identifying individual marker signals that show significant differences in expression between patients and the normal population. However, signals for multiple analyte combinations that exhibit patterned behaviors have been less exploited. Here, we present a novel approach for identifying biomarkers of schizophrenia using expression of serum analytes from first onset, drug-naïve patients and normal controls. The strength of patterned signals was amplified by analyzing data in reproducing kernel spaces. This resulted in the identification of small sets of analytes referred to as targeted clusters that have discriminative power specifically for schizophrenia in both human and rat models. These clusters were associated with specific molecular signaling pathways and less strongly related to other neuropsychiatric disorders such as major depressive disorder and bipolar disorder. These results shed new light concerning how complex neuropsychiatric diseases behave at the pathway level and demonstrate the power of this approach in identification of disease-specific biomarkers and potential novel therapeutic strategies.
Proteomics | 2011
Xiaoping Yang; Yishai Levin; Hassan Rahmoune; Dan Ma; Stephanie Schöffmann; Yagnesh Umrania; Paul C. Guest; Sabine Bahn
In this study, we performed the first high‐throughput and comprehensive proteomic profiling of the rat hippocampal proteome. Using a combination of 2‐D LC‐MS and data analysis with the Rosetta Elucidator® system, we identified 1340 unique proteins. Functional classification showed that most of these were associated with synaptic function and comprised a high proportion of phosphorylated proteins and analytically challenging classes of membrane proteins such as ion channel receptor subunits.
Journal of Experimental Medicine | 2017
David Thomas; Simon Clare; John M. Sowerby; Mercedes Pardo; Jatinder K. Juss; David Goulding; L van der Weyden; Daniel M. L. Storisteanu; Ananth Prakash; Marion Espeli; Shaun M. Flint; James C. Lee; K Hoenderdos; Leanne Kane; Katherine Harcourt; Subhankar Mukhopadhyay; Yagnesh Umrania; Robin Antrobus; James A. Nathan; David J. Adams; Alex Bateman; Jyoti S. Choudhary; Paul A. Lyons; Alison M. Condliffe; Edwin R. Chilvers; Gordon Dougan; Kenneth G C Smith
The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox. Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.
Mbio | 2016
S. Karniely; Michael P. Weekes; Robin Antrobus; Joanna Rorbach; L. van Haute; Yagnesh Umrania; D. L. Smith; Richard James Stanton; Michal Minczuk; Paul J. Lehner; John Sinclair
ABSTRACT Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Cell Host & Microbe | 2018
Katie Nightingale; Kai-Min Lin; Benjamin J. Ravenhill; Colin J. Davies; Luis Nobre; Ceri Alan Fielding; Eva Ruckova; Alice Fletcher-Etherington; Lior Soday; Hester Nichols; Daniel M. Sugrue; Edward Chung Yern Wang; Pablo Moreno; Yagnesh Umrania; Edward L. Huttlin; Robin Antrobus; Andrew J. Davison; Gavin William Grahame Wilkinson; Richard James Stanton; Peter Tomasec; Michael P. Weekes
Summary Human cytomegalovirus (HCMV) is an important pathogen with multiple immune evasion strategies, including virally facilitated degradation of host antiviral restriction factors. Here, we describe a multiplexed approach to discover proteins with innate immune function on the basis of active degradation by the proteasome or lysosome during early-phase HCMV infection. Using three orthogonal proteomic/transcriptomic screens to quantify protein degradation, with high confidence we identified 35 proteins enriched in antiviral restriction factors. A final screen employed a comprehensive panel of viral mutants to predict viral genes that target >250 human proteins. This approach revealed that helicase-like transcription factor (HLTF), a DNA helicase important in DNA repair, potently inhibits early viral gene expression but is rapidly degraded during infection. The functionally unknown HCMV protein UL145 facilitates HLTF degradation by recruiting the Cullin4 E3 ligase complex. Our approach and data will enable further identifications of innate pathways targeted by HCMV and other viruses.