Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yair Anikster is active.

Publication


Featured researches published by Yair Anikster.


The New England Journal of Medicine | 2009

Epilepsy, Ataxia, Sensorineural Deafness, Tubulopathy, and KCNJ10 Mutations

Detlef Bockenhauer; Sally Feather; Horia Stanescu; Sascha Bandulik; Anselm A. Zdebik; Markus Reichold; Jonathan Tobin; Evelyn Lieberer; Christina Sterner; Guida Landouré; Ruchi Arora; Tony Sirimanna; Dorothy A. Thompson; J. Helen Cross; William van’t Hoff; Omar Al Masri; Kjell Tullus; Stella Yeung; Yair Anikster; Enriko Klootwijk; Mike Hubank; Michael J. Dillon; Dirk Heitzmann; Mauricio Arcos-Burgos; Mark A. Knepper; Angus Dobbie; William A. Gahl; Richard Warth; Eamonn Sheridan; Robert Kleta

BACKGROUND Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy). METHODS Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice. RESULTS Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting. CONCLUSIONS Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation.


The New England Journal of Medicine | 2014

Mutant Adenosine Deaminase 2 in a Polyarteritis Nodosa Vasculopathy

Paulina Navon Elkan; Sarah B. Pierce; Reeval Segel; Thomas J. Walsh; Judith Barash; Shai Padeh; Abraham Zlotogorski; Yackov Berkun; Joseph Press; Masha Mukamel; Isabel Voth; Philip J. Hashkes; Liora Harel; Vered Hoffer; Eduard Ling; Fatoş Yalçınkaya; Ozgur Kasapcopur; Ming K. Lee; Rachel E. Klevit; Paul Renbaum; Ariella Weinberg-Shukron; Elif F. Sener; Barbara Schormair; Sharon Zeligson; Dina Marek-Yagel; Tim M. Strom; Mordechai Shohat; Amihood Singer; Alan Rubinow; Elon Pras

BACKGROUND Polyarteritis nodosa is a systemic necrotizing vasculitis with a pathogenesis that is poorly understood. We identified six families with multiple cases of systemic and cutaneous polyarteritis nodosa, consistent with autosomal recessive inheritance. In most cases, onset of the disease occurred during childhood. METHODS We carried out exome sequencing in persons from multiply affected families of Georgian Jewish or German ancestry. We performed targeted sequencing in additional family members and in unrelated affected persons, 3 of Georgian Jewish ancestry and 14 of Turkish ancestry. Mutations were assessed by testing their effect on enzymatic activity in serum specimens from patients, analysis of protein structure, expression in mammalian cells, and biophysical analysis of purified protein. RESULTS In all the families, vasculitis was caused by recessive mutations in CECR1, the gene encoding adenosine deaminase 2 (ADA2). All the Georgian Jewish patients were homozygous for a mutation encoding a Gly47Arg substitution, the German patients were compound heterozygous for Arg169Gln and Pro251Leu mutations, and one Turkish patient was compound heterozygous for Gly47Val and Trp264Ser mutations. In the endogamous Georgian Jewish population, the Gly47Arg carrier frequency was 0.102, which is consistent with the high prevalence of disease. The other mutations either were found in only one family member or patient or were extremely rare. ADA2 activity was significantly reduced in serum specimens from patients. Expression in human embryonic kidney 293T cells revealed low amounts of mutant secreted protein. CONCLUSIONS Recessive loss-of-function mutations of ADA2, a growth factor that is the major extracellular adenosine deaminase, can cause polyarteritis nodosa vasculopathy with highly varied clinical expression. (Funded by the Shaare Zedek Medical Center and others.).


Nature Genetics | 2011

NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules

Meral Gunay-Aygun; Tzipora C. Falik-Zaccai; Thierry Vilboux; Yifat Zivony-Elboum; Fatma Gumruk; Mualla Cetin; Morad Khayat; Cornelius F. Boerkoel; Nehama Kfir; Yan Huang; Dawn M. Maynard; Heidi Dorward; Katherine Berger; Robert Kleta; Yair Anikster; Mutlu Arat; Andrew Freiberg; Beate E. Kehrel; Kerstin Jurk; Pedro Cruz; Jim Mullikin; James G. White; Marjan Huizing; William A. Gahl

Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder that is characterized by large platelets that lack α-granules. Here we show that mutations in NBEAL2 (neurobeachin-like 2), which encodes a BEACH/ARM/WD40 domain protein, cause GPS and that megakaryocytes and platelets from individuals with GPS express a unique combination of NBEAL2 transcripts. Proteomic analysis of sucrose-gradient subcellular fractions of platelets indicated that NBEAL2 localizes to the dense tubular system (endoplasmic reticulum) in platelets.


Nature Genetics | 2001

Mutation of a new gene causes a unique form of Hermansky-Pudlak syndrome in a genetic isolate of central Puerto Rico

Yair Anikster; Marjan Huizing; James G. White; Yuriy O. Shevchenko; Diana L. Fitzpatrick; Jeffrey W. Touchman; John G. Compton; Sherri J. Bale; Richard T. Swank; William A. Gahl; Jorge R. Toro

Hermansky–Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by oculocutaneous albinism and a storage pool deficiency due to an absence of platelet dense bodies. Lysosomal ceroid lipofuscinosis, pulmonary fibrosis and granulomatous colitis are occasional manifestations of the disease. HPS occurs with a frequency of one in 1,800 in north-west Puerto Rico due to a founder effect. Several non-Puerto Rican patients also have mutations in HPS1, which produces a protein of unknown function. Another gene, ADTB3A, causes HPS in the pearl mouse and in two brothers with HPS-2 (refs. 11,12). ADTB3A encodes a coat protein involved in vesicle formation, implicating HPS as a disorder of membrane trafficking. We sought to identify other HPS-causing genes. Using homozygosity mapping on pooled DNA of 6 families from central Puerto Rico, we localized a new HPS susceptibility gene to a 1.6-cM interval on chromosome 3q24. The gene, HPS3, has 17 exons, and a putative 113.7-kD product expected to reveal how new vesicles form in specialized cells. The homozygous, disease-causing mutation is a large deletion and represents the second example of a founder mutation causing HPS on the small island of Puerto Rico. We also present an allele-specific assay for diagnosing individuals heterozygous or homozygous for this mutation.


American Journal of Human Genetics | 2001

Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): Identification of the OPA3 gene and its founder mutation in Iraqi Jews

Yair Anikster; Robert Kleta; Avraham Shaag; William A. Gahl; Orly Elpeleg

Type III 3-methylglutaconic aciduria (MGA) (MIM 258501) is a neuro-ophthalmologic syndrome that consists of early-onset bilateral optic atrophy and later-onset spasticity, extrapyramidal dysfunction, and cognitive deficit. Urinary excretion of 3-methylglutaconic acid and of 3-methylglutaric acid is increased. The disorder has been reported in approximately 40 patients of Iraqi Jewish origin, allowing the mapping of the disease to chromosome 19q13.2-q13.3, by linkage analysis. To isolate the causative gene, OPA3, we sequenced four genes within the critical interval and identified, in the intronic sequence of a gene corresponding to cDNA clone FLJ22187, a point mutation that segregated with the type III MGA phenotype. The FLJ22187-cDNA clone, which we identified as the OPA3 gene, consists of two exons and encodes a peptide of 179 amino acid residues. Northern blot analysis revealed a primary transcript of approximately 5.0 kb that was ubiquitously expressed, most prominently in skeletal muscle and kidney. Within the brain, the cerebral cortex, the medulla, the cerebellum, and the frontal lobe, compared to other parts of the brain, had slightly increased expression. The intronic G-->C mutation abolished mRNA expression in fibroblasts from affected patients and was detected in 8 of 85 anonymous Israeli individuals of Iraqi Jewish origin. Milder mutations in OPA3 should be sought in patients with optic atrophy with later onset, even in the absence of additional neurological abnormalities.


The New England Journal of Medicine | 2012

Integrin α3 mutations with kidney, lung, and skin disease.

Cristina Has; Giuseppina Spartà; Dimitra Kiritsi; Lisa Weibel; Alexander Moeller; Virginia Vega-Warner; A Waters; Yinghong He; Yair Anikster; Philipp R. Esser; Beate K. Straub; Ingrid Hausser; Detlef Bockenhauer; Benjamin Dekel; Friedhelm Hildebrandt; Leena Bruckner-Tuderman; Guido F. Laube

Integrin α(3) is a transmembrane integrin receptor subunit that mediates signals between the cells and their microenvironment. We identified three patients with homozygous mutations in the integrin α(3) gene that were associated with disrupted basement-membrane structures and compromised barrier functions in kidney, lung, and skin. The patients had a multiorgan disorder that included congenital nephrotic syndrome, interstitial lung disease, and epidermolysis bullosa. The renal and respiratory features predominated, and the lung involvement accounted for the lethal course of the disease. Although skin fragility was mild, it provided clues to the diagnosis.


Traffic | 2000

Hermansky–Pudlak Syndrome and Related Disorders of Organelle Formation

Marjan Huizing; Yair Anikster; William A. Gahl

Hermansky–Pudlak syndrome (HPS) consists of a group of genetically heterogeneous disorders which share the clinical findings of oculocutaneous albinism, a platelet storage pool deficiency, and some degree of ceroid lipofuscinosis. Related diseases share some of these findings and may exhibit other symptoms and signs but the underlying defect in the entire group of disorders involves defective intracellular vesicle formation, transport or fusion. Two HPS‐causing genes, HPS1 and ADTB3A, have been isolated but the function of only the latter has been determined. ADTB3A codes for the β3A subunit of adaptor complex‐3, responsible for vesicle formation from the trans‐Golgi network (TGN). The many HPS patients who do not have HPS1 or ADTB3A mutations have their disease because of mutations in other genes. Candidates for these HPS‐causing genes include those responsible for mouse models of HPS or for the ‘granule’ group of eye color genes in Drosophila. Each gene responsible for a subset of HPS or a related disorder codes for a protein which almost certainly plays a pivotal role in vesicular trafficking, inextricably linking clinical and cell biological interests in this group of diseases.


Genetics in Medicine | 2015

Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios

Xiaolin Zhu; Slavé Petrovski; Pingxing Xie; Elizabeth K. Ruzzo; Yi-Fan Lu; K. Melodi McSweeney; Bruria Ben-Zeev; Andreea Nissenkorn; Yair Anikster; Danit Oz-Levi; Ryan S. Dhindsa; Yuki Hitomi; Kelly Schoch; Rebecca C. Spillmann; Gali Heimer; Dina Marek-Yagel; Michal Tzadok; Yujun Han; Gordon Worley; Jennifer L. Goldstein; Yong-hui Jiang; Doron Lancet; Elon Pras; Vandana Shashi; Duncan McHale; Anna C. Need; David B. Goldstein

Purpose:Despite the recognized clinical value of exome-based diagnostics, methods for comprehensive genomic interpretation remain immature. Diagnoses are based on known or presumed pathogenic variants in genes already associated with a similar phenotype. Here, we extend this paradigm by evaluating novel bioinformatics approaches to aid identification of new gene–disease associations.Methods:We analyzed 119 trios to identify both diagnostic genotypes in known genes and candidate genotypes in novel genes. We considered qualifying genotypes based on their population frequency and in silico predicted effects we also characterized the patterns of genotypes enriched among this collection of patients.Results:We obtained a genetic diagnosis for 29 (24%) of our patients. We showed that patients carried an excess of damaging de novo mutations in intolerant genes, particularly those shown to be essential in mice (P = 3.4 × 10−8). This enrichment is only partially explained by mutations found in known disease-causing genes.Conclusion:This work indicates that the application of appropriate bioinformatics analyses to clinical sequence data can also help implicate novel disease genes and suggest expanded phenotypes for known disease genes. These analyses further suggest that some cases resolved by whole-exome sequencing will have direct therapeutic implications.Genet Med 17 10, 774–781.


Pediatric Research | 2002

Nonsense Mutations in ADTB3A Cause Complete Deficiency of the β3A Subunit of Adaptor Complex-3 and Severe Hermansky-Pudlak Syndrome Type 2

Marjan Huizing; Charles Scher; Erin T. Strovel; Diana L. Fitzpatrick; Lisa M. Hartnell; Yair Anikster; William A. Gahl

Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disease consisting of oculocutaneous albinism and a storage pool deficiency resulting from absent platelet dense bodies. The disorder is genetically heterogeneous. The majority of patients, including members of a large genetic isolate in northwest Puerto Rico, have mutations in HPS1. Another gene, ADTB3A, was shown to cause HPS-2 in two brothers having compound heterozygous mutations that allowed for residual production of the gene product, the β3A subunit of adaptor complex-3 (AP-3). This heterotetrameric complex serves as a coat protein–mediating formation of intracellular vesicles, e.g. the melanosome and platelet dense body, from membranes of the trans-Golgi network. We determined the genomic organization of the human ADTB3A gene, with intron/exon boundaries, and describe a third patient with β3A deficiency. This 5-y-old boy has two nonsense mutations, C1578T (R→X) and G2028T (E→X), which produce no ADTB3A mRNA and no β3A protein. The associated μ3 subunit of AP-3 is also entirely absent. In fibroblasts, the cell biologic concomitant of this deficiency is robust and aberrant trafficking through the plasma membrane of LAMP-3, an integral lysosomal membrane protein normally carried directly to the lysosome. The clinical concomitant is a severe, G-CSF–responsive neutropenia in addition to oculocutaneous albinism and platelet storage pool deficiency. Our findings expand the molecular, cellular, and clinical spectrum of HPS-2 and call for an increased index of suspicion for this diagnosis among patients with features of albinism, bleeding, and neutropenia.


Blood | 2010

Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p

Meral Gunay-Aygun; Yifat Zivony-Elboum; Fatma Gumruk; Dan Geiger; Mualla Cetin; Morad Khayat; Robert Kleta; Nehama Kfir; Yair Anikster; Judith Chezar; Mauricio Arcos-Burgos; A Shalata; Horia Stanescu; J Manaster; Mutlu Arat; Hailey Edwards; Andrew Freiberg; Ps Hart; Lc Riney; K Patzel; P Tanpaiboon; Tom Markello; Marjan Huizing; Irina Maric; M Horne; Beate E. Kehrel; Kerstin Jurk; Nancy F. Hansen; Praveen F. Cherukuri; MaryPat Jones

Gray platelet syndrome (GPS) is an inherited bleeding disorder characterized by macrothrombocytopenia and absence of platelet α-granules resulting in typical gray platelets on peripheral smears. GPS is associated with a bleeding tendency, myelofibrosis, and splenomegaly. Reports on GPS are limited to case presentations. The causative gene and underlying pathophysiology are largely unknown. We present the results of molecular genetic analysis of 116 individuals including 25 GPS patients from 14 independent families as well as novel clinical data on the natural history of the disease. The mode of inheritance was autosomal recessive (AR) in 11 and indeterminate in 3 families. Using genome-wide linkage analysis, we mapped the AR-GPS gene to a 9.4-Mb interval on 3p21.1-3p22.1, containing 197 protein-coding genes. Sequencing of 1423 (69%) of the 2075 exons in the interval did not identify the GPS gene. Long-term follow-up data demonstrated the progressive nature of the thrombocytopenia and myelofibrosis of GPS resulting in fatal hemorrhages in some patients. We identified high serum vitamin B(12) as a consistent, novel finding in GPS. Chromosome 3p21.1-3p22.1 has not been previously linked to a platelet disorder; identification of the GPS gene will likely lead to the discovery of novel components of platelet organelle biogenesis. This study is registered at www.clinicaltrials.gov as NCT00069680 and NCT00369421.

Collaboration


Dive into the Yair Anikster's collaboration.

Top Co-Authors

Avatar

William A. Gahl

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marjan Huizing

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Kleta

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dina Marek-Yagel

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge