Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yair Weiss is active.

Publication


Featured researches published by Yair Weiss.


international conference on computer graphics and interactive techniques | 2004

Colorization using optimization

Anat Levin; Dani Lischinski; Yair Weiss

Colorization is a computer-assisted process of adding color to a monochrome image or movie. The process typically involves segmenting images into regions and tracking these regions across image sequences. Neither of these tasks can be performed reliably in practice; consequently, colorization requires considerable user intervention and remains a tedious, time-consuming, and expensive task.In this paper we present a simple colorization method that requires neither precise image segmentation, nor accurate region tracking. Our method is based on a simple premise; neighboring pixels in space-time that have similar intensities should have similar colors. We formalize this premise using a quadratic cost function and obtain an optimization problem that can be solved efficiently using standard techniques. In our approach an artist only needs to annotate the image with a few color scribbles, and the indicated colors are automatically propagated in both space and time to produce a fully colorized image or sequence. We demonstrate that high quality colorizations of stills and movie clips may be obtained from a relatively modest amount of user input.


international conference on computer vision | 1999

Segmentation using eigenvectors: a unifying view

Yair Weiss

Automatic grouping and segmentation of images remains a challenging problem in computer vision. Recently, a number of authors have demonstrated good performance on this task using methods that are based on eigenvectors of the affinity matrix. These approaches are extremely attractive in that they are based on simple eigendecomposition algorithms whose stability is well understood. Nevertheless, the use of eigendecompositions in the context of segmentation is far from well understood. In this paper we give a unified treatment of these algorithms, and show the close connections between them while highlighting their distinguishing features. We then prove results on eigenvectors of block matrices that allow us to analyze the performance of these algorithms in simple grouping settings. Finally, we use our analysis to motivate a variation on the existing methods that combines aspects from different eigenvector segmentation algorithms. We illustrate our analysis with results on real and synthetic images.


computer vision and pattern recognition | 2009

Understanding and evaluating blind deconvolution algorithms

Anat Levin; Yair Weiss; William T. Freeman

Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand. The goal of this paper is to analyze and evaluate recent blind deconvolution algorithms both theoretically and experimentally. We explain the previously reported failure of the naive MAP approach by demonstrating that it mostly favors no-blur explanations. On the other hand we show that since the kernel size is often smaller than the image size a MAP estimation of the kernel alone can be well constrained and accurately recover the true blur. The plethora of recent deconvolution techniques makes an experimental evaluation on ground-truth data important. We have collected blur data with ground truth and compared recent algorithms under equal settings. Additionally, our data demonstrates that the shift-invariant blur assumption made by most algorithms is often violated.


international conference on computer vision | 2001

Deriving intrinsic images from image sequences

Yair Weiss

Intrinsic images are a useful midlevel description of scenes proposed by H.G. Barrow and J.M. Tenenbaum (1978). An image is de-composed into two images: a reflectance image and an illumination image. Finding such a decomposition remains a difficult problem in computer vision. We focus on a slightly, easier problem: given a sequence of T images where the reflectance is constant and the illumination changes, can we recover T illumination images and a single reflectance image? We show that this problem is still imposed and suggest approaching it as a maximum-likelihood estimation problem. Following recent work on the statistics of natural images, we use a prior that assumes that illumination images will give rise to sparse filter outputs. We show that this leads to a simple, novel algorithm for recovering reflectance images. We illustrate the algorithms performance on real and synthetic image sequences.


international conference on computer vision | 2011

From learning models of natural image patches to whole image restoration

Daniel Zoran; Yair Weiss

Learning good image priors is of utmost importance for the study of vision, computer vision and image processing applications. Learning priors and optimizing over whole images can lead to tremendous computational challenges. In contrast, when we work with small image patches, it is possible to learn priors and perform patch restoration very efficiently. This raises three questions - do priors that give high likelihood to the data also lead to good performance in restoration? Can we use such patch based priors to restore a full image? Can we learn better patch priors? In this work we answer these questions. We compare the likelihood of several patch models and show that priors that give high likelihood to data perform better in patch restoration. Motivated by this result, we propose a generic framework which allows for whole image restoration using any patch based prior for which a MAP (or approximate MAP) estimate can be calculated. We show how to derive an appropriate cost function, how to optimize it and how to use it to restore whole images. Finally, we present a generic, surprisingly simple Gaussian Mixture prior, learned from a set of natural images. When used with the proposed framework, this Gaussian Mixture Model outperforms all other generic prior methods for image denoising, deblurring and inpainting.


neural information processing systems | 1999

Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology

Yair Weiss; William T. Freeman

Graphical models, such as Bayesian networks and Markov random fields, represent statistical dependencies of variables by a graph. Local belief propagation rules of the sort proposed by Pearl (1988) are guaranteed to converge to the correct posterior probabilities in singly connected graphs. Recently, good performance has been obtained by using these same rules on graphs with loops, a method we refer to as loopy belief propagation. Perhaps the most dramatic instance is the near Shannon-limit performance of Turbo codes, whose decoding algorithm is equivalent to loopy propagation. Except for the case of graphs with a single loop, there has been little theoretical understanding of loopy propagation. Here we analyze belief propagation in networks with arbitrary topologies when the nodes in the graph describe jointly gaussian random variables. We give an analytical formula relating the true posterior probabilities with those calculated using loopy propagation. We give sufficient conditions for convergence and show that when belief propagation converges, it gives the correct posterior means for all graph topologies, not just networks with a single loop. These results motivate using the powerful belief propagation algorithm in a broader class of networks and help clarify the empirical performance results.


Neural Computation | 2000

Correctness of Local Probability Propagation in Graphical Models with Loops

Yair Weiss

Graphical models, such as Bayesian networks and Markov networks, represent joint distributions over a set of variables by means of a graph. When the graph is singly connected, local propagation rules of the sort proposed by Pearl (1988) are guaranteed to converge to the correct posterior probabilities. Recently a number of researchers have empirically demonstrated good performance of these same local propagation schemes on graphs with loops, but a theoretical understanding of this performance has yet to be achieved. For graphical models with a single loop, we derive an analytical relationship between the probabilities computed using local propagation and the correct marginals. Using this relationship we show a category of graphical models with loops for which local propagation gives rise to provably optimal maximum a posteriori assignments (although the computed marginals will be incorrect). We also show how nodes can use local information in the messages they receive in order to correct their computed marginals. We discuss how these results can be extended to graphical models with multiple loops and show simulation results suggesting that some properties of propagation on single-loop graphs may hold for a larger class of graphs. Specifically we discuss the implication of our results for understanding a class of recently proposed error-correcting codes known as turbo codes.


european conference on computer vision | 2004

Seamless Image Stitching in the Gradient Domain

Anat Levin; Assaf Zomet; Shmuel Peleg; Yair Weiss

Image stitching is used to combine several individual images having some overlap into a composite image. The quality of image stitching is measured by the similarity of the stitched image to each of the input images, and by the visibility of the seam between the stitched images.


computer vision and pattern recognition | 2004

Learning object detection from a small number of examples: the importance of good features

Kobi Levi; Yair Weiss

Face detection systems have recently achieved high detection rates and real-time performance. However, these methods usually rely on a huge training database (around 5,000 positive examples for good performance). While such huge databases may be feasible for building a system that detects a single object, it is obviously problematic for scenarios where multiple objects (or multiple views of a single object) need to be detected. Indeed, even for multi-viewface detection the performance of existing systems is far from satisfactory. In this work we focus on the problem of learning to detect objects from a small training database. We show that performance depends crucially on the features that are used to represent the objects. Specifically, we show that using local edge orientation histograms (EOH) as features can significantly improve performance compared to the standard linear features used in existing systems. For frontal faces, local orientation histograms enable state of the art performance using only a few hundred training examples. For profile view faces, local orientation histograms enable learning a system that seems to outperform the state of the art in real-time systems even with a small number of training examples.


computer vision and pattern recognition | 2011

Efficient marginal likelihood optimization in blind deconvolution

Anat Levin; Yair Weiss; William T. Freeman

In blind deconvolution one aims to estimate from an input blurred image y a sharp image x and an unknown blur kernel k. Recent research shows that a key to success is to consider the overall shape of the posterior distribution p(x, k\y) and not only its mode. This leads to a distinction between MAPx, k strategies which estimate the mode pair x, k and often lead to undesired results, and MAPk strategies which select the best k while marginalizing over all possible x images. The MAPk principle is significantly more robust than the MAPx, k one, yet, it involves a challenging marginalization over latent images. As a result, MAPk techniques are considered complicated, and have not been widely exploited. This paper derives a simple approximated MAPk algorithm which involves only a modest modification of common MAPx, k algorithms. We show that MAPk can, in fact, be optimized easily, with no additional computational complexity.

Collaboration


Dive into the Yair Weiss's collaboration.

Top Co-Authors

Avatar

Anat Levin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Amit Gruber

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Chen Yanover

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Edward H. Adelson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Assaf Zomet

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Talya Meltzer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Noam Shental

Open University of Israel

View shared research outputs
Top Co-Authors

Avatar

Jonathan S. Yedidia

Mitsubishi Electric Research Laboratories

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge