Yaiza Esteban
Ciber
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaiza Esteban.
Molecular metabolism | 2013
Marc Schneeberger; Jordi Altirriba; Ainhoa Garcia; Yaiza Esteban; Carlos Castaño; Montserrat Garcia-Lavandeira; Clara V. Alvarez; Ramon Gomis; Marc Claret
MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. However, their potential role in the central regulation of whole-body energy homeostasis is still unknown. In this study we show that the expression of Dicer, an essential endoribonuclease for miRNA maturation, is modulated by nutrient availability and excess in the hypothalamus. Conditional deletion of Dicer in POMC-expressing cells resulted in obesity, characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism and alterations in the pituitary-adrenal axis. The development of the obese phenotype was paralleled by a POMC neuron degenerative process that started around 3 weeks of age. Hypothalamic transcriptomic analysis in presymptomatic POMCDicerKO mice revealed the downregulation of genes implicated in biological pathways associated with classical neurodegenerative disorders, such as MAPK signaling, ubiquitin-proteosome system, autophagy and ribosome biosynthesis. Collectively, our results highlight a key role for miRNAs in POMC neuron survival and the consequent development of neurodegenerative obesity.
The Journal of Clinical Endocrinology and Metabolism | 2015
Marcelina Párrizas; Laura Brugnara; Yaiza Esteban; Alba Gonzalez-Franquesa; Silvia Canivell; Serafín Murillo; Elizabeth Gordillo-Bastidas; Roser Cussó; Joan A. Cadefau; Pablo M. Garcia-Roves; Joan-Marc Servitja; Anna Novials
CONTEXT Diabetes is frequently diagnosed late, when the development of complications is almost inevitable, decreasing the quality of life of patients. However, early detection of affected individuals would allow the implementation of timely and effective therapies. OBJECTIVE Here we set to describe the profile of circulating microRNAs (miRNAs) in prediabetic patients with the intention of identifying novel diagnostic and therapeutic tools. DESIGN We used real-time RT-PCR to measure the abundance of 176 miRNAs in serum of a cohort of 92 control and prediabetic individuals with either impaired fasting glucose or impaired glucose tolerance, as well as newly diagnosed diabetic patients. We validated the results in a second cohort of control and prediabetic subjects undergoing a therapeutic exercise intervention, as well as in a mouse model of glucose intolerance. RESULTS We identified two miRNAs, miR-192 and miR-193b, whose abundance is significantly increased in the prediabetic state but not in diabetic patients. Strikingly, these miRNAs are also increased in plasma of glucose-intolerant mice. Moreover, circulating levels of miR-192 and miR-193b return to baseline in both prediabetic humans and glucose-intolerant mice undergoing a therapeutic intervention consisting in chronic exercise, which succeeded in normalizing metabolic parameters. CONCLUSIONS Our data show that the pattern of circulating miRNAs is modified by defects in glucose metabolism in a similar manner in mice and humans. This circulating miRNA signature for prediabetes could be used as a new diagnostic tool, as well as to monitor response to intervention.
Molecular & Cellular Proteomics | 2008
Sílvia Barceló-Batllori; Susana G. Kalko; Yaiza Esteban; Sílvia Moreno; María del Carmen Carmona; Ramon Gomis
Our previous results demonstrated that tungstate decreased weight gain and adiposity in obese rats through increased thermogenesis and lipid oxidation, suggesting that brown adipose tissue was one of the targets of its antiobesity effect. To identify potential targets of tungstate, we used DIGE to compare brown adipose tissue protein extracts from the following experimental groups: untreated lean, tungstate-treated lean, untreated obese, and tungstate-treated obese rats. To distinguish direct targets of tungstate action from those that are secondary to body weight loss, we also included in the analysis an additional group consisting of obese rats that lose weight by caloric restriction. Hierarchical clustering of analysis of variance and t test contrasts clearly separated the different experimental groups. DIGE analysis identified 20 proteins as tungstate obesity direct targets involved in Krebs cycle, glycolysis, lipolysis and fatty acid oxidation, electron transport, and redox. Protein oxidation was decreased by tungstate treatment, confirming a role in redox processes; however, palmitate oxidation, as a measure of fatty acid β-oxidation, was not altered by tungstate, thus questioning its putative function in fatty acid oxidation. Protein network analyses using Ingenuity Pathways Analysis highlighted peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) as a potential target. We confirmed by real time PCR that indeed tungstate up-regulates PGC-1α, and its major target, uncoupling protein 1, was also increased as shown by Western blot. These results illustrate the utility of proteomics and bioinformatics approaches to identify targets of obesity therapies and suggest that in brown adipose tissue tungstate modulates redox processes and increases energy dissipation through uncoupling and PGC-1α up-regulation, thus contributing to its overall antiobesity effect.
Cell Reports | 2015
Marc Schneeberger; Alicia G. Gómez-Valadés; Jordi Altirriba; David Sebastián; Sara Ramírez; Ainhoa Garcia; Yaiza Esteban; Anne Drougard; Albert Ferrés-Coy; Analía Bortolozzi; Pablo M. Garcia-Roves; John G. Jones; Bruno Manadas; Antonio Zorzano; Ramon Gomis; Marc Claret
Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D.
Obesity | 2013
Felicia Hanzu; Melina M. Musri; Alvaro Sánchez-Herrero; Marc Claret; Yaiza Esteban; Perla Kaliman; Ramon Gomis; Marcelina Párrizas
Persistent inflammation and impaired adipogenesis are frequent features of obesity and underlie the development of its complications. However, the factors behind adipose tissue dysfunction are not completely understood. Previously it was shown that histone demethylase KDM1A is required for adipogenesis.
Scientific Reports | 2016
Gemma Pujadas; Sara Cervantes; A. Tutusaus; Miriam Ejarque; Lidia Sanchez; Ainhoa Garcia; Yaiza Esteban; Laura Fargas; Berta Alsina; C. Hartmann; Ramon Gomis; Rosa Gasa
Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs.
Endocrinología, Diabetes y Nutrición | 2017
Xavier Escoté; Gloria Aranda; Mireia Mora; Gregori Casals; Joaquim Enseñat; Oscar Vidal; Yaiza Esteban; Irene Halperin; Felicia Hanzu
INTRODUCTION Cushing syndrome (CS), an endogenous hypercortisolemic condition with increased cardiometabolic morbidity, leads to development of abdominal obesity, insulin resistance, diabetes and proatherogenic dyslipidemia. Zinc alpha-2 glycoprotein (ZAG) is a recently characterized lipolytic adipokine implicated in regulation of adipose tissue metabolism and fat distribution. In vitro and animal studies suggest that glucocorticoids interact with ZAG secretion and action. To assess the relationship between ZAG and glucocorticoids in a human model of hypercortisolism, circulating ZAG levels were tested in patients with CS and its counterpart controls. METHODS An observational, cross-sectional study on 39 women, 13 with active CS and 26 controls matched by age and body mass index. Plasma ZAG levels (μg/ml) were measured by ELISA and correlated with hypercortisolism, metabolic, and phenotypic parameters. RESULTS Plasma ZAG levels were significantly higher in patients with CS compared to controls (64.3±16.6 vs. 44.0±16.1, p=0.002). In a univariate analysis, ZAG levels positively correlated to 24-h urinary free cortisol (p=0.001), body mass index (p=0.02), non-esterified fatty acids (p=0.05), glucose (p=0.003), LDL-C (p=0.028), and type 2 diabetes mellitus (p=0.016), and were inversely related to total adiponectin levels (p=0.035). In a multivariate analysis, after adjusting for CS, ZAG levels only correlated with body mass index (p=0.012), type 2 diabetes mellitus (p=0.004), and glucose (p<0.001). CONCLUSION This study provides initial evidence that plasma ZAG levels are higher in patients with CS as compared to controls. The close relationship of ZAG with metabolic and phenotypic changes in CS suggests that ZAG may play a significant role in adipose tissue changes in hypercortisolism.
International Journal of Endocrinology | 2017
Gloria Aranda; Cristina Lopez; Rebeca Fernandez-Ruiz; Yaiza Esteban; Guillermo Garcia-Eguren; Mireia Mora; Irene Halperin; Gregori Casals; Joaquim Enseñat; Felicia Hanzu
Glucocorticoids (GC) induce cardiometabolic risk while atherosclerosis is a chronic inflammation involving immunity. GC are immune suppressors, and the adrenocorticotrophic hormone (ACTH) has immune modulator activities. Both may act in atherothrombotic inflammation involving immune cells (IMNC). Aim. To investigate adhesion and activation surface cell markers (CDs) of peripheral IMNC in endogenous Cushing syndrome (CS) and the immune modulator role of ACTH. Material and Methods. 16 ACTH-dependent CS (ACTH-D), 10 ACTH-independent (ACTH-ID) CS, and 16 healthy controls (C) were included. Leukocytes (Leuc), monocytes (MN), lymphocytes (Lym), and neutrophils (N) were analyzed by flow cytometry for atherosclerosis previously associated with CDs. Results. Leuc, N, and MN correlated with CS (p < 0.05), WC (p < 0.001), WHR (p = 0.003), BMI (p < 0.001), and hs-CRP (p < 0.001). CD14++CD16+ (p = 0.047); CD14+CD16++ (p = 0.053) MN; CD15+ (p = 0.027); CD15+CD16+ (p = 0.008) N; and NK-Lym (p = 0.019) were higher in CS. CD14+CD16++ MN were higher in ACTH-ID (8.9 ± 3.5%) versus ACTH-D CS (4.2 ± 1.9%) versus C (4.9 ± 2.3%). NK-Lym correlated with c-LDL (r = 0.433, p = 0.039) and CD15+ N with hs-CRP (r = 0.446, p = 0.037). In multivariate analysis, Leuc, N, and MN depended on BMI (p = 0.021), WC (p = 0.002), and WHR (p = 0.014), while CD15+ and CD15+CD16+ N on hypercortisolism and CS (p = 0.035). Conclusion. In CS, IMNC present changes in activation and adhesion CDs implicated in atherothrombotic inflammation. ACTH-IDCS presents a particular IMNC phenotype, possibly due to the absence of the immune modulator effect of ACTH.
Cell | 2013
Marc Schneeberger; Marcelo O. Dietrich; David Sebastián; Monica Imbernon; Carlos Castaño; Ainhoa Garcia; Yaiza Esteban; Alba Gonzalez-Franquesa; Ignacio Rodríguez; Analía Bortolozzi; Pablo M. Garcia-Roves; Ramon Gomis; Ruben Nogueiras; Tamas L. Horvath; Antonio Zorzano; Marc Claret
Diabetologia | 2013
Sandra A. Rebuffat; Joana Moitinho Oliveira; Jordi Altirriba; Nuria Palau; Ainhoa Garcia; Yaiza Esteban; Belen Nadal; Ramon Gomis