Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yajun Cheng is active.

Publication


Featured researches published by Yajun Cheng.


Journal of Biological Chemistry | 2003

Identification of Human Intestinal Alkaline Sphingomyelinase as a Novel Ecto-enzyme Related to the Nucleotide Phosphodiesterase Family

Rui-Dong Duan; Tomas Bergman; Ning Xu; Jun Wu; Yajun Cheng; Jianxin Duan; Sven Nelander; Carina Palmberg; Åke Nilsson

Alkaline sphingomyelinase (alk-SMase) hydrolyzes dietary sphingomyelin and generates sphingolipid messengers in the gut. In the present study, we purified the enzyme, identified a part of the amino acid sequence, and found a cDNA in the GenBank™ coding for the protein. The cDNA contains 1841 bp, and the open reading frame encodes 458 amino acids. Transient expression of the cDNA linked to a Myc tag in COS-7 cells increased alk-SMase activity in the cell extract by 689-fold and in the medium by 27-fold. High activity was also identified in the anti-Myc immunoprecipitated proteins and the proteins cross-reacted with anti-human alk-SMase. Northern blotting of human intestinal tissues found high levels of alk-SMase mRNA in the intestine and liver. The amino acid sequence shared no similarity with acid and neutral SMases but was related to the ecto-nucleotide phosphodiesterase (NPP) family with 30–36% identity to human NPPs. Alk-SMase has a predicted signal peptide domain at the N terminus and a signal anchor domain at the C terminus. The ion-binding sites and the catalytic residue of NPPs were conserved, but the substrate specificity domain was modified. Alk-SMase had no detectable nucleotidase activity, but its activity against sphingomyelin could be inhibited by orthovanadate, imidazole, and ATP. In contrast to NPPs, alk-SMase activity was not stimulated by divalent metal ions but inhibited by Zn2+. Differing from NPP2, the alk-SMase cleaved phosphocholine but not choline from lysophosphatidylcholine. Phylogenetic tree indicated that the enzyme is a new branch derived from the NPP family. Two cDNA sequences of mouse and rat that shared 83% identity to human alk-SMase were identified in the GenBank™. In conclusion, we identified the amino acid and cDNA sequences of human intestinal alk-SMase, and found that it is a novel ecto-enzyme related to the NPP family with specific features essential for its SMase activity.


Biochemical Journal | 2006

Intestinal alkaline sphingomyelinase hydrolyses and inactivates platelet-activating factor by a phospholipase C activity

Jun Wu; Åke Nilsson; Bo Jönsson; Hanna Stenstad; William W. Agace; Yajun Cheng; Rui-Dong Duan

Alkaline sphingomyelinase (alk-SMase) is a new member of the NPP (nucleotide pyrophosphatase/phosphodiesterase) family that hydrolyses SM (sphingomyelin) to generate ceramide in the intestinal tract. The enzyme may protect the intestinal mucosa from inflammation and tumorigenesis. PAF (platelet-activating factor) is a pro-inflammatory phospholipid involved in pathogenesis of inflammatory bowel diseases. We examined whether alk-SMase can hydrolyse and inactivate PAF. [3H]Octadecyl-labelled PAF was incubated with purified rat intestinal alk-SMase or recombinant human alk-SMase expressed in COS-7 cells. The hydrolytic products were assayed with TLC and MS. We found that alkSMase cleaved the phosphocholine head group from PAF and generated 1-O-alkyl-2-acetyl-sn-glycerol. Differing from the activity against SM, the activity against PAF was optimal at pH 7.5, inhibited by EDTA and stimulated by 0.1-0.25 mM Zn2+. The activity was abolished by site mutation of the predicted metal-binding sites that are conserved in all NPP members. Similar to the activity against SM, the activity against PAF was dependent on bile salt, particularly taurocholate and taurochenodeoxycholate. The V(max) for PAF hydrolysis was 374 mumol x h(-1) x (mg of protein)(-1). The hydrolysis of PAF and SM could be inhibited by the presence of SM and PAF respectively, the inhibition of PAF hydrolysis by SM being stronger. The PAF-induced MAPK (mitogen-activated protein kinase) activation and IL-8 (interleukin 8) release in HT-29 cells, and chemotaxis in leucocytes were abolished by alk-SMase treatment. In conclusion, alk-SMase hydrolyses and inactivates PAF by a phospholipase C activity. The finding reveals a novel function, by which alk-SMase may counteract the development of intestinal inflammation and colon cancer.


Journal of Lipid Research | 2011

Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice

Yao Zhang; Yajun Cheng; Gert H. Hansen; Lise-Lotte Niels-Christiansen; Frank Koentgen; Lena Ohlsson; Åke Nilsson; Rui-Dong Duan

Alkaline sphingomyelinase (alk-SMase) hydrolyses sphingomyelin (SM) to ceramide in the gut. To evaluate the physiological importance of the enzyme, we generated alk-SMase knockout (KO) mice by the Cre-recombinase-Locus of X-over P1(Cre-LoxP) system and studied SM digestion. Both wild-type (WT) and KO mice were fed 3H-palmitic acid labeled SM together with milk SM by gavage. The lipids in intestinal content, intestinal tissues, serum, and liver were analyzed by TLC. In KO mice, nondigested 3H-SM in the intestinal content increased by 6-fold and the formation of 3H-ceramide decreased markedly, resulting in 98% reduction of 3H-ceramide/3H-SM ratio 1 h after gavage. The absorbed 3H-palmitic acid portion was decreased by 95%. After 3 h, a small increase in 3H-ceramide was identified in distal intestine in KO mice. In feces, 3H-SM was increased by 243% and ceramide decreased by 74% in the KO mice. The KO mice also showed significantly decreased radioactivity in liver and serum. Furthermore, alkaline phosphatase activity in the mucosa was reduced by 50% and histological comparison of two female littermates preliminarily suggested mucosal hypertrophy in KO mice. This study provides definite proof for crucial roles of alk-SMase in SM digestion and points to possible roles in regulating mucosal growth and alkaline phosphatase function.


Journal of Cancer Research and Clinical Oncology | 2007

Ursolic acid inhibits the formation of aberrant crypt foci and affects colonic sphingomyelin hydrolyzing enzymes in azoxymethane-treated rats

David A. Andersson; Yajun Cheng; Rui-Dong Duan

Ursolic acid (UA) is a pentacyclic triterpenoid, with anti-cancer and anti-inflammatory properties. Sphingomyelin (SM) hydrolysis generates lipid messengers regulating cell survival. Earlier studies showed that UA has anti-proliferative and apoptotic effects on HT29 cells, accompanied by a rapid increase in alkaline sphingomyelinase (Alk-SMase) activity. This study examines the effect of orally administered UA on the formation of aberrant crypt foci (ACF) and intestinal SMase activity in azoxymethane (AOM)-treated rats. Sprague-Dawley rats were divided into eight groups, receiving AOM or vehicle, and fed normal diet or pellets containing 0.11% UA in the initiation or promotion/progression phase. The formation of ACF in the colon and the activities of three types of mucosal SMase were examined. UA significantly reduced the incidence of ACF containing three or more crypts in the initiation group, but had no significant effect in the promotion/progression group. AOM reduced mucosal Alk-SMase activity, and the inhibitory effects could not be prevented by UA. However, in both AOM-treated and normal rats, UA increased the activity of colonic neutral SMase markedly and that of acid SMase activity mildly. These results indicate that UA has chemopreventive effects in the initiation phase of colon cancer associated with changes in SM metabolism.


British Journal of Nutrition | 2004

Psyllium and fat in diets differentially affect the activities and expressions of colonic sphingomyelinases and caspase in mice.

Yajun Cheng; Lena Ohlsson; Rui-Dong Duan

Dietary fibre and fat affect colonic tumourigenesis and inflammation. Sphingomyelin metabolism may have implications for the pathogenesis of colonic tumours and ulcerative colitis. The present study examined the effects of psyllium and fat on the enzymes responsible for sphingomyelin metabolism and apoptosis in the colon. Mice were fed control, psyllium-containing (100 g/kg), high-fat (313 g/kg, 53 % energy as fat) or high-fat plus psyllium diets for 4 weeks. The activities of acid, neutral and alkaline sphingomyelinase (SMase), neutral ceramidase, and caspase 3, 8 and 9 in colonic mucosa were determined. The expressions of alkaline SMase and caspase 3 were examined. The psyllium-containing diet was found to increase significantly the activities of alkaline SMase and caspase 3 and decreased those of acid SMase and neutral ceramidase. The high-fat diet had opposite effects on these enzymes and attenuated the effects of psyllium. Western blotting showed that psyllium increased and high-fat decreased the levels of alkaline SMase and caspase 3 in colonic mucosa. The change in caspase 3 activity was positively correlated with that of alkaline SMase and negatively with acid SMase. No similar changes of acid and alkaline phosphatase activities in the colon or acid and neutral SMase activity in the liver were identified. In conclusion, colonic sphingomyelin metabolism and apoptosis were affected by psyllium and fat in an opposite manner. The results may have implications for colorectal tumourigenesis and inflammation.


Lipids | 2001

Evidence for specific ceramidase present in the intestinal contents of rats and humans

Rui-Dong Duan; Yajun Cheng; Liping Yang; Lena Ohlsson; Åke Nilsson

A neutral ceramidase activity stimulated by bile salt was previously identified in the intestinal content. Recently, bile salt stimulated lipase (BSSL) was found to have ceramidase activity. It is unknown whether the ceramidase activity previously found is attributable to BSSL. To address this question, we compared the behaviors of high quaternary aminoethyl (HQ) anion exchange chromatography, the distributions, the stability, and the responses to lipase inhibitor between ceramidase and pancreatic BSSL. The proteins from whole small intestinal contents of humans and rats were precipitated by acetone and dissolved in 20 mM Tris buffer pH 8.2. These proteins had neutral ceramidase activity but not BSSL activity against p-nitrophenyl acetate. When the proteins were subject to HQ chromatography, two peaks of ceramidase activity were identified, which had acid and neutral pH optima, respectively. Neither of them had BSSL activity against p-nitrophenyl acetate. Western blot using BSSL antiserum failed to identify BSSL protein in the fractions, with high neutral ceramidase activity. In rat intestinal tract, pancreatic BSSL activity was high in the duodenum and declined rapidly in the small intestine, whereas neutral ceramidase activity was low in the duodenum and maintained a high level until the distal part of the small intestine. In addition, orlistat, the inhibitor of lipase, abolished human BSSL activity against p-nitrophenyl acetate and slightly reduced its activity against ceramide but had no inhibitory effect on ceramidase activity isolated by HQ chromatography. In conclusion, we provide the evidence for a specific ceramidase other than pancreatic BSSL present in the intestinal content. The enzyme may play important roles in digestion of dietary sphingolipids.


British Journal of Cancer | 2007

Identification of aberrant forms of alkaline sphingomyelinase (NPP7) associated with human liver tumorigenesis.

Yajun Cheng; Jun Wu; Erik Hertervig; Stefan Lindgren; D Duan; Åke Nilsson; Rui-Dong Duan

Alkaline sphingomyelinase (alk-SMase) is expressed in the intestine and human liver. It may inhibit colonic tumorigenesis, and loss of function mutations have been identified in human colon cancer. The present study investigates its expression in human liver cancer. In HepG2 liver cancer cells, RT–PCR identified three transcripts with 1.4, 1.2 and 0.4 kb, respectively. The 1.4 kb form is the wild-type cDNA with five translated exons, the 1.2 kb product lacks exon 4 and the 0.4 kb form is a combination of exons 1 and 5. Genomic sequence showed that these aberrant transcripts were products of alternative splicing. Transient expression of the 1.2 kb form showed no alk-SMase activity. In HepG2 cells, the alk-SMase activity is low in monolayer condition and increased with cell polarisation. Coexistence of 1.4 and 1.2 kb forms was also identified in one hepatoma biopsy. GenBank search identified a cDNA clone from human liver tumour, which codes a protein containing full length of alk-SMase plus a 73-amino-acid tag at the N terminus. The aberrant form was translated by an alternative starting codon upstream of the wild-type mRNA. Expression study showed that linking the tag markedly reduced the enzyme activity. We also analysed human liver biopsy samples and found relatively low alk-SMase activity in diseases with increased risk of liver tumorigenesis. In conclusion, expression of alk-SMase is changed in hepatic tumorigenesis, resulting in loss or marked reduction of the enzyme function.


Pediatric Research | 2007

Human Meconium Contains Significant Amounts of Alkaline Sphingomyelinase, Neutral Ceramidase, and Sphingolipid Metabolites

Rui-Dong Duan; Yajun Cheng; Bo Jönsson; Lena Ohlsson; Andreas Herbst; Lena Hellström-Westas; Åke Nilsson

Intestinal alkaline sphingomyelinase (Alk-SMase) and neutral ceramidase may catalyze the hydrolysis of endogenous sphingomyelin (SM) and milk SM in human-milk fed infants. The enzymes generate sphingolipid metabolites that may influence gut maturation. Alk-SMase also inactivates platelet-activating factor (PAF) that is involved in the pathogenesis of necrotizing enterocolitis (NEC). We examined whether the two enzymes are expressed in both preterm and term infants and analyzed Alk-SMase, neutral ceramidase, SM, and sphingolipid metabolites in meconium. Meconium was collected from 46 preterm (gestational ages 23–36 wk) and 38 term infants (gestational ages 37–42 wk) and analyzed for Alk-SMase using 14C-choline–labeled SM and for neutral ceramidase using 14C-octanoyl-sphingosine as substrates. Molecular species of SM, ceramide, and sphingosine were analyzed by high-performance liquid chromatography mass spectroscopy. Meconium contained significant levels of Alk-SMase and ceramidase at all gestational ages. It also contained 16–24 carbon molecular species of SM, palmitoyl- and stearoyl-sphingosine, and sphingosine. There were positive correlations between levels of SM and ceramide and between ceramide and sphingosine levels. In conclusion, Alk-SMase and ceramidase are expressed in the gut of both preterm and term newborn infants and may generate bioactive sphingolipid messengers.


Lipids | 2003

Development of intestinal alkaline sphingomyelinase in rat fetus and newborn rat.

Jan Lillienau; Yajun Cheng; Åke Nilsson; Rui-Dong Duan

Sphingomyelin metabolism is a novel signal transduction pathway related to cell differentiation, proliferation, and apoptosis. Alkaline sphingomyelinase (alk-SMase) is specifically present in the intestinal tract of many species. The enzyme is important in digestion of dietary sphingomyelin. Milk is the ony exogenous source of sphingomyelin for an infant, and digestion of milk sphingomyelin may be important for development of intestinal mucosa. It is unknown whether alk-SMase is present before birth and whether it changes after birth and during the suckling period. We studied activities, expression, and distribution of alk-SMase in rat fetus and newborn. The changes of acid and neutral SMase as well as alkaline phosphatase were analyzed for comparison. Little activity of alk-SMase was identified up to gestation day 20, but increased 10 times during the following 2 d. After birth, the activity continused to increase during the following 4 wk. Western blot using IgY antibody against rat alk-SMase failed to identify the enzyme at gestation day 20 but clearly showed the protein at day 22. The distribution pattern of the enzyme along the intestinal tract in fetus was largely the same as in adult animals, but became more pronounced after birth. Short-term weaning had no effect on alk-SMase activity. The activities of acid and neutral SMase were high at gestation day 20 and decreased significantly before birth. The changes of alk-SMase also differed from those of alkaline phosphatase, another brush border enzyme. Thus, we conclude that alk-SMase is rapidly expressed during the last days of gestation and that the newborn rat acquires the ability to digest milk sphingomyelin early in life.


Phytotherapy Research | 2013

Ursolic Acid Inhibits Acid Sphingomyelinase in Intestinal Cells.

Ping Zhang; Yajun Cheng; Rui-Dong Duan

Ursolic acid (UA) has antiinflammatory and anticancer effects on mammalian cells. Increase in acid sphingomyelinase (SMase) is associated with several inflammatory diseases including inflammatory bowel diseases. The enzyme has become a target for drug discovery. The present study examined the roles of UA on acid SMase in intestinal cells. We found that UA specifically inhibited acid SMase activity in both human colon cancer Caco‐2 cells and rat nontransformed IEC‐6 intestinal cells in a dose‐dependent manner, with 50% inhibition occurred at 30 μM for Caco‐2 cells and less than 20 μM for IEC‐6 cells. In comparison with some chemicals known to inhibit acid SMase, UA appeared most effective. The decreased acid SMase activity was not associated with significant accumulation of cellular sphingomyelin but significant increase in phosphatidylcholine, the donor of choline for sphingomyelin synthesis. Western blot analysis showed a decreased enzyme levels in the cells after UA stimulation, but real time quantitative polymerase chain reaction (qPCR) failed to show a parallel reduction of acid SMase mRNA after UA stimulation. Finally, UA had no direct effect on acid SMase activity in cell‐free extracts. In conclusion, UA has inhibitory effects on acid SMase synthesis and the effect occurs presumably at posttranslational levels. Copyright

Collaboration


Dive into the Yajun Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge