Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yajun Yan is active.

Publication


Featured researches published by Yajun Yan.


Molecular Pharmaceutics | 2008

Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids.

Effendi Leonard; Yajun Yan; Zachary L. Fowler; Zhen Li; Chin-Giaw Lim; Kok-Hong Lim; Mattheos A. G. Koffas

Plant flavonoid polyphenols continue to find increasing pharmaceutical and nutraceutical applications; however their isolation, especially of pure compounds, from plant material remains an underlying challenge. In the past Escherichia coli, one of the most well-characterized microorganisms, has been utilized as a recombinant host for protein expression and heterologous biosynthesis of small molecules. However, in many cases the expressed protein activities and biosynthetic efficiency are greatly limited by the host cellular properties, such as precursor and cofactor availability and protein or product tolerance. In the present work, we developed E. coli strains capable of high-level flavonoid synthesis through traditional metabolic engineering techniques. In addition to grafting the plant biosynthetic pathways, the methods included engineering of an alternative carbon assimilation pathway and the inhibition of competitive reaction pathways in order to increase intracellular flavonoid backbone precursors and cofactors. With this strategy, we report the production of plant-specific flavanones up to 700 mg/L and anthocyanins up to 113 mg/L from phenylpropanoic acid and flavan-3-ol precursors, respectively. These results demonstrated the efficient and scalable production of plant flavonoids from E. coli for pharmaceutical and nutraceutical applications.


Applied and Environmental Microbiology | 2005

Biosynthesis of Natural Flavanones in Saccharomyces cerevisiae

Yajun Yan; Abhijeet Kohli; Mattheos A. G. Koffas

ABSTRACT A four-step flavanone biosynthetic pathway was constructed and introduced into Saccharomyces cerevisiae. The recombinant yeast strain was fed with phenylpropanoid acids and produced the flavanones naringenin and pinocembrin 62 and 22 times more efficiently compared to previously reported recombinant prokaryotic strains. Microbial biosynthesis of the flavanone eriodictyol was also achieved.


Applied and Environmental Microbiology | 2005

Metabolic Engineering of Anthocyanin Biosynthesis in Escherichia coli

Yajun Yan; Joseph Chemler; Lixuan Huang; Stefan Martens; Mattheos A. G. Koffas

ABSTRACT Anthocyanins are red, purple, or blue plant pigments that belong to the family of polyphenolic compounds collectively called flavonoids. Their demonstrated antioxidant properties and economic importance to the dye, fruit, and cut-flower industries have driven intensive research into their metabolic biosynthetic pathways. In order to produce stable, glycosylated anthocyanins from colorless flavanones such as naringenin and eriodictyol, a four-step metabolic pathway was constructed that contained plant genes from heterologous origins: flavanone 3β-hydroxylase from Malus domestica, dihydroflavonol 4-reductase from Anthurium andraeanum, anthocyanidin synthase (ANS) also from M. domestica, and UDP-glucose:flavonoid 3-O-glucosyltransferase from Petunia hybrida. Using two rounds of PCR, each one of the four genes was first placed under the control of the trc promoter and its own bacterial ribosome-binding site and then cloned sequentially into vector pK184. Escherichia coli cells containing the recombinant plant pathway were able to take up either naringenin or eriodictyol and convert it to the corresponding glycosylated anthocyanin, pelargonidin 3-O-glucoside or cyanidin 3-O-glucoside. The produced anthocyanins were present at low concentrations, while most of the metabolites detected corresponded to their dihydroflavonol precursors, as well as the corresponding flavonols. The presence of side product flavonols is at least partly due to an alternate reaction catalyzed by ANS. This is the first time plant-specific anthocyanins have been produced from a microorganism and opens up the possibility of further production improvement by protein and pathway engineering.


Microbial Cell Factories | 2006

Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae

Joseph Chemler; Yajun Yan; Mattheos A. G. Koffas

Industrial biotechnology employs the controlled use of microorganisms for the production of synthetic chemicals or simple biomass that can further be used in a diverse array of applications that span the pharmaceutical, chemical and nutraceutical industries. Recent advances in metagenomics and in the incorporation of entire biosynthetic pathways into Saccharomyces cerevisiae have greatly expanded both the fitness and the repertoire of biochemicals that can be synthesized from this popular microorganism. Further, the availability of the S. cerevisiae entire genome sequence allows the application of systems biology approaches for improving its enormous biosynthetic potential. In this review, we will describe some of the efforts on using S. cerevisiae as a cell factory for the biosynthesis of high-value natural products that belong to the families of isoprenoids, flavonoids and long chain polyunsaturated fatty acids. As natural products are increasingly becoming the center of attention of the pharmaceutical and nutraceutical industries, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures with unique properties.


Applied and Environmental Microbiology | 2005

Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae.

Effendi Leonard; Yajun Yan; Kok Hong Lim; Mattheos A. G. Koffas

ABSTRACT Flavones are plant secondary metabolites that have wide pharmaceutical and nutraceutical applications. We previously constructed a recombinant flavanone pathway by expressing in Saccharomyces cerevisiae a four-step recombinant pathway that consists of cinnamate-4 hydroxylase, 4-coumaroyl:coenzyme A ligase, chalcone synthase, and chalcone isomerase. In the present work, the biosynthesis of flavones by two distinct flavone synthases was evaluated by introducing a soluble flavone synthase I (FSI) and a membrane-bound flavone synthase II (FSII) into the flavanone-producing recombinant yeast strain. The resulting recombinant strains were able to convert various phenylpropanoid acid precursors into the flavone molecules chrysin, apigenin, and luteolin, and the intermediate flavanones pinocembrin, naringenin, and eriodictyol accumulated in the medium. Improvement of flavone biosynthesis was achieved by overexpressing the yeast P450 reductase CPR1 in the FSII-expressing recombinant strain and by using acetate rather than glucose or raffinose as the carbon source. Overall, the FSI-expressing recombinant strain produced 50% more apigenin and six times less naringenin than the FSII-expressing recombinant strain when p-coumaric acid was used as a precursor phenylpropanoid acid. Further experiments indicated that unlike luteolin, the 5,7,4′-trihydroxyflavone apigenin inhibits flavanone biosynthesis in vivo in a nonlinear, dose-dependent manner.


Current Opinion in Biotechnology | 2016

Microbial production of value-added nutraceuticals.

Jian Wang; Sanjay Guleria; Mattheos A. G. Koffas; Yajun Yan

Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches.


Current Opinion in Biotechnology | 2014

Microbial production of antioxidant food ingredients via metabolic engineering

Yuheng Lin; Rachit Jain; Yajun Yan

Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins.


Biocatalysis and Biotransformation | 2008

Characterization of dihydroflavonol 4-reductases for recombinant plant pigment biosynthesis applications

Effendi Leonard; Yajun Yan; Joseph Chemler; Ulrich Matern; Stefan Martens; Mattheos A. G. Koffas

Anthocyanins are colorful plant pigments with promising applications as pharmaceuticals and colorants. In order to engineer efficient pigment biosynthesis in Escherichia coli, the activities of various dihydroflavonol 4-reductases (DFRs) were characterized for the three primary dihydroflavonol substrates. The biochemical assays demonstrated variable DFR activities for dihydroflavonol with one B-ring hydroxyl group, the precursor of pelargonidin derivatives. In contrast, dihydroflavonols with two and three B-ring hydroxylation were metabolized with comparable efficiency. Furthermore, the catalysis of DFR for the secondary substrates, flavanones, also depended on the number of B-ring hydroxyl groups. Engineering the expression of the DFR clones together with plant-specific 4-coumaroyl:CoA ligase, chalcone synthase, chalcone isomerase, and flavanone 3-hydroxylase in E. coli resulted in the synthesis of pelargonidin at various levels, from p-coumaric acids. The identification of a robust DFR from this study can also be used for engineering recombinant synthesis of other bioactive flavonoids, such as flavan-3-ols.


Metabolic Engineering | 2006

Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli.

Effendi Leonard; Yajun Yan; Mattheos A. G. Koffas


Biotechnology and Bioengineering | 2008

High-yield anthocyanin biosynthesis in engineered Escherichia coli.

Yajun Yan; Zhen Li; Mattheos A. G. Koffas

Collaboration


Dive into the Yajun Yan's collaboration.

Top Co-Authors

Avatar

Mattheos A. G. Koffas

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Effendi Leonard

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Li

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Wang

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge