Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yakeel T. Quiroz is active.

Publication


Featured researches published by Yakeel T. Quiroz.


Lancet Neurology | 2012

Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer's disease in the presenilin 1 E280A kindred: a case-control study

Eric M. Reiman; Yakeel T. Quiroz; Adam S. Fleisher; Kewei Chen; Carlos Velez-Pardo; Marlene Jimenez-Del-Rio; Anne M. Fagan; Aarti R. Shah; Sergio Alvarez; Andres Arbelaez; Margarita Giraldo; Natalia Acosta-Baena; Reisa A. Sperling; Brad Dickerson; Chantal E. Stern; Victoria Tirado; Claudia Muñoz; Rebecca Reiman; Matthew J. Huentelman; Gene E. Alexander; Jessica B. Langbaum; Kenneth S. Kosik; Pierre N. Tariot; Francisco Lopera

BACKGROUND We have previously characterised functional brain abnormalities in young adults at genetic risk for late-onset Alzheimers disease. To gain further knowledge on the preclinical phase of Alzheimers disease, we sought to characterise structural and functional MRI, CSF, and plasma biomarkers in a cohort of young adults carrying a high-penetrance autosomal dominant mutation that causes early-onset Alzheimers disease. METHODS Between January and August, 2010, 18-26-year-old presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the Colombian Alzheimers Prevention Initiative Registry in Medellín Antioquia, Colombia, had structural MRI, functional MRI during associative memory encoding and novel viewing and control tasks, and cognitive assessments. Consenting participants also had lumbar punctures and venepunctures. Outcome measures were task-dependent hippocampal or parahippocampal activations and precuneus or posterior cingulate deactivations, regional grey matter reductions, CSF Aβ(1-42), total tau and phospho-tau(181) concentrations, and plasma Aβ(1-42) concentrations and Aβ(1-42):Aβ(1-40) ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to Alzheimers disease. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. FINDINGS 44 participants were included: 20 PSEN1 E280A mutation carriers and 24 non-carriers. The carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological test scores, or proportion of apolipoprotein E (APOE) ɛ4 carriers. Compared with non-carriers, carriers had greater right hippocampal and parahippocampal activation (p=0·001 and p<0·014, respectively, after correction for multiple comparisons), less precuneus and posterior cingulate deactivation (all p<0·010 after correction), and less grey matter in several parietal regions (all p<0·002 uncorrected and corrected p=0·009 in the right parietal search region). In the 20 participants (ten PSEN1 E280A mutation carriers and ten non-carriers) who had lumbar punctures and venepunctures, mutation carriers had higher CSF Aβ(1-42) concentrations (p=0·008) and plasma Aβ(1-42) concentrations (p=0·01) than non-carriers. INTERPRETATION Young adults at genetic risk for autosomal dominant Alzheimers disease have functional and structural MRI findings and CSF and plasma biomarker findings consistent with Aβ(1-42) overproduction. Although the extent to which the underlying brain changes are either neurodegenerative or developmental remain to be determined, this study shows the earliest known biomarker changes in cognitively normal people at genetic risk for autosomal dominant Alzheimers disease. FUNDING Banner Alzheimers Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Boston University Department of Psychology, Colciencias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, and the State of Arizona.


Journal of Alzheimer's Disease | 2011

Alzheimer's Prevention Initiative: A Plan to Accelerate the Evaluation of Presymptomatic Treatments

Eric M. Reiman; Jessica B. Langbaum; Adam S. Fleisher; Richard J. Caselli; Kewei Chen; Napatkamon Ayutyanont; Yakeel T. Quiroz; Kenneth S. Kosik; Francisco Lopera; Pierre N. Tariot

There is an urgent need to find effective presymptomatic Alzheimers disease (AD) treatments that reduce the risk of AD symptoms or prevent them completely. It currently takes too many healthy people, too much money and too many years to evaluate the range of promising presymptomatic treatments using clinical endpoints. We have used brain imaging and other measurements to track some of the earliest changes associated with the predisposition to AD. We have proposed the Alzheimers Prevention Initiative (API) to evaluate investigational amyloid-modifying treatments in healthy people who, based on their age and genetic background, are at the highest imminent risk of developing symptomatic AD using brain imaging, cerebrospinal fluid (CSF), and cognitive endpoints. In one trial, we propose to study AD-causing presenilin 1 [PS1] mutation carriers from the worlds largest early-onset AD kindred in Antioquia, Colombia, close to their estimated average age at clinical onset. In another trial, we propose to study apolipoprotein E (APOE) ε4 homozygotes (and possibly heterozygotes) close to their estimated average age at clinical onset. The API has several goals: 1) to evaluate investigational AD-modifying treatments sooner than otherwise possible; 2) to determine the extent to which the treatments brain imaging and other biomarker effects predict a clinical benefit-information needed to help qualify biomarker endpoints for use in pivotal prevention trials; 3) to provide a better test of the amyloid hypothesis than clinical trials in symptomatic patients, when these treatments may be too little too late to exert their most profound effect; 4) to establish AD prevention registries needed to support these and other presymptomatic AD trials; and 5) to give those individuals at highest imminent risk of AD symptoms access to the most promising investigational treatments in clinical trials.


Lancet Neurology | 2012

Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study.

Adam S. Fleisher; Kewei Chen; Yakeel T. Quiroz; Laura Jakimovich; Madelyn Gutierrez Gomez; Carolyn M. Langois; Jessica B. Langbaum; Napatkamon Ayutyanont; Auttawut Roontiva; Pradeep Thiyyagura; Wendy Lee; Hua Mo; Liliana Lopez; Sonia Moreno; Natalia Acosta-Baena; Margarita Giraldo; Gloria María Gallego García; Rebecca Reiman; Matthew J. Huentelman; Kenneth S. Kosik; Pierre N. Tariot; Francisco Lopera; Eric M. Reiman

BACKGROUND Fibrillar amyloid-β (Aβ) is thought to begin accumulating in the brain many years before the onset of clinical impairment in patients with Alzheimers disease. By assessing the accumulation of Aβ in people at risk of genetic forms of Alzheimers disease, we can identify how early preclinical changes start in individuals certain to develop dementia later in life. We sought to characterise the age-related accumulation of Aβ deposition in presenilin 1 (PSEN1) E280A mutation carriers across the spectrum of preclinical disease. METHODS Between Aug 1 and Dec 6, 2011, members of the familial Alzheimers disease Colombian kindred aged 18-60 years were recruited from the Alzheimers Prevention Initiatives registry at the University of Antioquia, Medellín, Colombia. Cross-sectional assessment using florbetapir PET was done in symptomatic mutation carriers with mild cognitive impairment or mild dementia, asymptomatic carriers, and asymptomatic non-carriers. These assessments were done at the Banner Alzheimers Institute in Phoenix, AZ, USA. A cortical grey matter mask consisting of six predefined regions.was used to measure mean cortical florbetapir PET binding. Cortical-to-pontine standard-uptake value ratios were used to characterise the cross-sectional accumulation of fibrillar Aβ deposition in carriers and non-carriers with regression analysis and to estimate the trajectories of fibrillar Aβ deposition. FINDINGS We enrolled a cohort of 11 symptomatic individuals, 19 presymptomatic mutation carriers, and 20 asymptomatic non-carriers, ranging in age from 20 to 56 years. There was greater florbetapir binding in asymptomatic PSEN1 E280A mutation carriers than in age matched non-carriers. Fibrillar Aβ began to accumulate in PSEN 1E280A mutation carriers at a mean age of 28·2 years (95% CI 27·3-33·4), about 16 years and 21 years before the predicted median ages at mild cognitive impairment and dementia onset, respectively. (18)F florbetapir binding rose steeply over the next 9·4 years and plateaued at a mean age of 37·6 years (95% CI 35·3-40·2), about 6 and 11 years before the expected respective median ages at mild cognitive impairment and dementia onset. Prominent florbetapir binding was seen in the anterior and posterior cingulate, precuneus, and parietotemporal and frontal grey matter, as well as in the basal ganglia. Binding in the basal ganglia was not seen earlier or more prominently than in other regions. INTERPRETATION These findings contribute to the understanding of preclinical familial Alzheimers disease and help set the stage for assessment of amyloid-modifying treatments in the prevention of familial Alzheimers disease. FUNDING Avid Radiopharmaceuticals, Banner Alzheimers Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Colciencias, National Institute on Aging, and the State of Arizona.


Annals of Neurology | 2010

Hippocampal Hyperactivation in Presymptomatic Familial Alzheimer's Disease

Yakeel T. Quiroz; Andrew E. Budson; Kim A. Celone; Adriana Ruiz; Randall E. Newmark; Gabriel Castrillon; Francisco Lopera; Chantal E. Stern

The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimers disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively‐intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin‐1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms.


Nature Reviews Neurology | 2013

Ushering in the study and treatment of preclinical Alzheimer disease

Jessica B. Langbaum; Adam S. Fleisher; Kewei Chen; Napatkamon Ayutyanont; Francisco Lopera; Yakeel T. Quiroz; Richard J. Caselli; Pierre N. Tariot; Eric M. Reiman

Researchers have begun to characterize the subtle biological and cognitive processes that precede the clinical onset of Alzheimer disease (AD), and to set the stage for accelerated evaluation of experimental treatments to delay the onset, reduce the risk of, or completely prevent clinical decline. In this Review, we provide an overview of the experimental strategies, and brain imaging and cerebrospinal fluid biomarker measures that are used in early detection and tracking of AD, highlighting at-risk individuals who could be suitable for preclinical monitoring. We discuss how advances in the field have contributed to reconceptualization of AD as a sequence of biological changes that occur during progression from preclinical AD, to mild cognitive impairment and finally dementia, and we review recently proposed research criteria for preclinical AD. Advances in the study of preclinical AD have driven the recognition that efficacy of at least some AD therapies may depend on initiation of treatment before clinical manifestation of disease, leading to a new era of AD prevention research.


JAMA Neurology | 2015

Associations Between Biomarkers and Age in the Presenilin 1 E280A Autosomal Dominant Alzheimer Disease Kindred A Cross-sectional Study

Adam S. Fleisher; Kewei Chen; Yakeel T. Quiroz; Laura Jakimovich; Madelyn Gutierrez Gomez; Carolyn M. Langois; Jessica B. Langbaum; Auttawut Roontiva; Pradeep Thiyyagura; Wendy Lee; Napatkamon Ayutyanont; Liliana Lopez; Sonia Moreno; Claudia Muñoz; Victoria Tirado; Natalia Acosta-Baena; Anne M. Fagan; Margarita Giraldo; Gloria María Gallego García; Matthew J. Huentelman; Pierre N. Tariot; Francisco Lopera; Eric M. Reiman

IMPORTANCE Age-associated changes in brain imaging and fluid biomarkers are characterized and compared in presenilin 1 (PSEN1)E280A mutation carriers and noncarriers from the worlds largest known autosomal dominant Alzheimer disease (AD) kindred. OBJECTIVE To characterize and compare age-associated changes in brain imaging and fluid biomarkers in PSEN1 E280A mutation carriers and noncarriers. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of 18F-florbetapir positron emission tomography, 18F-fludeoxyglucose positron emission tomography, structural magnetic resonance imaging, cerebrospinal fluid (CSF), and plasma biomarkers of AD were assessed from 54 PSEN1 E280A kindred members (age range, 20-59 years). MAIN OUTCOMES AND MEASURES We used brain mapping algorithms to compare regional cerebral metabolic rates for glucose and gray matter volumes in cognitively unimpaired mutation carriers and noncarriers. We used regression analyses to characterize associations between age and the mean cortical to pontine 18F-florbetapir standard uptake value ratios, precuneus cerebral metabolic rates for glucose, hippocampal gray matter volume, CSF Aβ1-42, total tau and phosphorylated tau181, and plasma Aβ measurements. Age at onset of progressive biomarker changes that distinguish carriers from noncarriers was estimated using best-fitting regression models. RESULTS Compared with noncarriers, cognitively unimpaired mutation carriers had significantly lower precuneus cerebral metabolic rates for glucose, smaller hippocampal volume, lower CSF Aβ1-42, higher CSF total tau and phosphorylated tau181, and higher plasma Aβ1-42 measurements. Sequential changes in biomarkers were seen at age 20 years (95% CI, 14-24 years) for CSF Aβ1-42, age 16 years (95% CI, 11-24 years) for the mean cortical 18F-florbetapir standard uptake value ratio, age 15 years (95% CI, 10-24 years) for precuneus cerebral metabolic rate for glucose, age 15 years (95% CI, 7-20 years) for CSF total tau, age 13 years (95% CI, 8-19 years) for phosphorylated tau181, and age 6 years (95% CI, 1-10 years) for hippocampal volume, with cognitive decline up to 6 years before the kindreds estimated median age of 44 years (95% CI, 43-45 years) at mild cognitive impairment diagnosis. No age-associated findings were seen in plasma Aβ1-42 or Aβ1-40. CONCLUSIONS AND RELEVANCE This cross-sectional study provides additional information about the course of different AD biomarkers in the preclinical and clinical stages of autosomal dominant AD.


Cerebral Cortex | 2009

Greater Working Memory Load Results in Greater Medial Temporal Activity at Retrieval

Karin Schon; Yakeel T. Quiroz; Michael E. Hasselmo; Chantal E. Stern

Most functional magnetic resonance imaging (fMRI) studies examining working memory (WM) load have focused on the prefrontal cortex (PFC) and have demonstrated increased prefrontal activity with increased load. Here we examined WM load effects in the medial temporal lobe (MTL) using an fMRI Sternberg task with novel complex visual scenes. Trials consisted of 3 sequential events: 1) sample presentation (encoding), 2) delay period (maintenance), and 3) probe period (retrieval). During sample encoding, subjects saw either 2 or 4 pictures consecutively. During retrieval, subjects indicated whether the probe picture matched one of the sample pictures. Results revealed that activity in the left anterior hippocampal formation, bilateral retrosplenial area, and left amygdala was greater at retrieval for trials with larger memory load, whereas activity in the PFC was greater at encoding for trials with larger memory load. There was no load effect during the delay. When encoding, maintenance, and retrieval periods were compared with fixation, activity was present in the hippocampal body/tail and fusiform gyrus bilaterally during encoding and retrieval, but not maintenance. Bilateral dorsolateral prefrontal activity was present during maintenance, but not during encoding or retrieval. The results support models of WM predicting that activity in the MTL should be modulated by WM load.


Journal of Neurology, Neurosurgery, and Psychiatry | 2013

Cortical atrophy in presymptomatic Alzheimer's disease presenilin 1 mutation carriers

Yakeel T. Quiroz; Chantal E. Stern; Eric M. Reiman; Michael Brickhouse; Adriana Ruiz; Reisa A. Sperling; Francisco Lopera; Bradford C. Dickerson

Background Sporadic late-onset Alzheimers disease (AD) dementia has been associated with a ‘signature’ of cortical atrophy in paralimbic and heteromodal association regions measured with MRI. Objective To investigate whether a similar pattern of cortical atrophy is present in presymptomatic presenilin 1 E280A mutation carriers an average of 6 years before clinical symptom onset. Methods 40 cognitively normal volunteers from a Colombian population with familial AD were included; 18 were positive for the AD-associated presenilin 1 mutation (carriers, mean age=38) whereas 22 were non-carriers. T1-weighted volumetric MRI images were acquired and cortical thickness was measured. A priori regions of interest from our previous work were used to obtain thickness from AD-signature regions. Results Compared to non-carriers, presymptomatic presenilin 1 mutation carriers exhibited thinner cortex within the AD-signature summary measure (p<0.008). Analyses of individual regions demonstrated thinner angular gyrus, precuneus and superior parietal lobule in carriers compared to non-carriers, with trend-level effects in the medial temporal lobe. Conclusion Results demonstrate that cognitively normal individuals genetically determined to develop AD have a thinner cerebral cortex than non-carriers in regions known to be affected by typical late-onset sporadic AD. These findings provide further support for the hypothesis that cortical atrophy is present in preclinical AD more than 5 years prior to symptom onset. Further research is needed to determine whether this method could be used to characterise the age-dependent trajectory of cortical atrophy in presymptomatic stages of AD.


Neurology | 2011

Event-related potential markers of brain changes in preclinical familial Alzheimer disease

Yakeel T. Quiroz; Brandon A. Ally; Kim A. Celone; Joshua D. McKeever; A.L. Ruiz-Rizzo; Francisco Lopera; Chantal E. Stern; Andrew E. Budson

Objectives: Event-related potentials (ERPs) can reflect differences in brain electrophysiology underlying cognitive functions in brain disorders such as dementia and mild cognitive impairment. To identify individuals at risk for Alzheimer disease (AD) we used high-density ERPs to examine brain physiology in young presymptomatic individuals (average age 34.2 years) who carry the E280A mutation in the presenilin-1 (PSEN1) gene and will go on to develop AD around the age of 45. Methods: Twenty-one subjects from a Colombian population with familial AD participated: 10 presymptomatic subjects positive for the PSEN1 mutation (carriers) and 11 siblings without the mutation (controls). Subjects performed a visual recognition memory test while 128-channel ERPs were recorded. Results: Despite identical behavioral performance, PSEN1 mutation carriers showed less positivity in frontal regions and more positivity in occipital regions, compared to controls. These differences were more pronounced during the 200–300 msec period. Discriminant analysis at this time interval showed promising sensitivity (72.7%) and specificity (81.8%) of the ERP measures to predict the presence of AD pathology. Conclusions: Presymptomatic PSEN1 mutation carriers show changes in brain physiology that can be detected by high-density ERPs. The relative differences observed showing greater frontal positivity in controls and greater occipital positivity in carriers indicates that control subjects may use frontally mediated processes to distinguish between studied and unstudied visual items, whereas carriers appear to rely more upon perceptual details of the items to distinguish between them. These findings also demonstrate the potential usefulness of ERP brain correlates as preclinical markers of AD.


JAMA Neurology | 2015

Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease: A Cross-Sectional Study

Yakeel T. Quiroz; Aaron P. Schultz; Kewei Chen; Hillary Protas; Michael Brickhouse; Adam S. Fleisher; Jessica B. Langbaum; Pradeep Thiyyagura; Anne M. Fagan; Aarti R. Shah; Martha Muniz; Joseph F. Arboleda-Velasquez; Claudia Muñoz; Gloria María Gallego García; Natalia Acosta-Baena; Margarita Giraldo; Victoria Tirado; Dora Ramirez; Pierre N. Tariot; Bradford C. Dickerson; Reisa A. Sperling; Francisco Lopera; Eric M. Reiman

IMPORTANCE Brain imaging and fluid biomarkers are characterized in children at risk for autosomal dominant Alzheimer disease (ADAD). OBJECTIVE To characterize and compare structural magnetic resonance imaging (MRI), resting-state and task-dependent functional MRI, and plasma amyloid-β (Aβ) measurements in presenilin 1 (PSEN1) E280A mutation-carrying and noncarrying children with ADAD. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of structural and functional MRI and plasma Aβ assays were assessed in 18 PSEN1 E280A carriers and 19 noncarriers aged 9 to 17 years from a Colombian kindred with ADAD. Recruitment and data collection for this study were conducted at the University of Antioquia and the Hospital Pablo Tobon Uribe in Medellín, Colombia, between August 2011 and June 2012. MAIN OUTCOMES AND MEASURES All participants had blood sampling, structural MRI, and functional MRI during associative memory encoding and resting-state and cognitive assessments. Outcome measures included plasma Aβ1-42 concentrations and Aβ1-42:Aβ1-40 ratios, memory encoding-dependent activation changes, resting-state connectivity, and regional gray matter volumes. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to AD. RESULTS Similar to findings in adult mutation carriers, in the later preclinical and clinical stages of ADAD, mutation-carrying children were distinguished from control individuals by significantly higher plasma Aβ1-42 levels (mean [SD]: carriers, 18.8 [5.1] pg/mL and noncarriers, 13.1 [3.2] pg/mL; P < .001) and Aβ1-42:Aβ1-40 ratios (mean [SD]: carriers, 0.32 [0.06] and noncarriers, 0.21 [0.03]; P < .001), as well as less memory encoding task-related deactivation in parietal regions (eg, mean [SD] parameter estimates for the right precuneus were -0.590 [0.50] for noncarriers and -0.087 [0.38] for carriers; P < .005 uncorrected). Unlike carriers in the later stages, mutation-carrying children demonstrated increased functional connectivity of the posterior cingulate cortex with medial temporal lobe regions (mean [SD] parameter estimates were 0.038 [0.070] for noncarriers and 0.190 [0.057] for carriers), as well as greater gray matter volumes in temporal regions (eg, left parahippocampus; P < . 049, corrected for multiple comparisons). CONCLUSIONS AND RELEVANCE Children at genetic risk for ADAD have functional and structural brain changes and abnormal levels of plasma Aβ1-42. The extent to which the underlying brain changes are either neurodegenerative or developmental remains to be determined. This study provides additional information about the earliest known biomarker changes associated with ADAD.

Collaboration


Dive into the Yakeel T. Quiroz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kewei Chen

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge