Yakov A. Pakhomovsky
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yakov A. Pakhomovsky.
European Journal of Mineralogy | 2003
Sergey V. Krivovichev; Thomas Armbruster; V. N. Yakovenchuk; Yakov A. Pakhomovsky; Yuriy P. Menshikov
The crystals of lamprophyllite-2 M and lamprophyllite-2 O were found coexisting in an ussingite-microcline-sodalite veins in the Alluaiv Mt., Lovozero alkaline massif, in association with ussingite, aegirine, microcline, sodalite, albite, mangan- neptunite, vuonnemite, sphalerite, lomonosovite and betalomonosovite. The chemical composition of the polytypes corresponds to the formula (Sr 1.18Na0.66Ca0.12)S1.96Na (Na1.30Mn0.36Fe0.22Mg0.12)S2.00Ti3O2(Si2O7)2(OH)2. The structures of lamprophyllite-2 M (C2/m, a = 19.215(5), b = 7.061(2), c = 5.3719(15) A , b = 96.797(4) o, V = 723.7(4) A3) and lamprophyllite-2 O (Pnmn, a = 19.128(4), b = 7.0799(14), c = 5.3824(11) A , V = 728.9(3) A3) have been refined to R = 0.040 for 688 reflections (| Fo| ‡ 4sF) and to R = 0.084 for 571 reflections (| Fo| ‡ 4sF), respectively. The structures of both polytypes are based on the HOH layer consisting of a central O sheet of edge-sharing Na(1)O 6, Na(2)O6 and Ti(2)O6 octahedra sandwiched between two heterophyllosilicate H sheets. The H sheet is built by corner-sharing of Ti(1)O 5 square pyramids and Si 2O7 groups and consists of two types of rings of polyhedra: (i) six-membered rings (6 R) formed by two Si 2O7 groups and two TiO 5 square pyramids and (ii) four-membered rings (4R) formed by two silicate tetrahedra and two TiO 5 square pyramids. The Sr atom is located in the interlayer and is coordinated by six anions from 6 R of the upper H sheet and four anions from 4 R of the lower H sheet. The difference between monoclinic and orthorhombic lamprophyllites can be described in terms of different orientations of HOH layers. Whereas in lamprophyllite-2 M, all HOH layers are in the same orientation, in lamprophyllite-2 O, two adjacent layers are in different orientations.
Mineralogical Magazine | 2010
Sergey V. Krivovichev; V. N. Yakovenchuk; Elena S. Zhitova; Andrey A. Zolotarev; Yakov A. Pakhomovsky; G. Yu. Ivanyuk
Abstract The crystal structure of quintinite-2H-3c, [Mg4Al2(OH)12](CO3)(H2O)3, from the Kovdor alkaline massif, Kola peninsula, Russia, was solved by direct methods and refined to an agreement index (R1) of 0.055 for 484 unique reflections with |Fo| ≥ 4σF. The mineral is rhombohedral, R32, a = 5.2745(7), c = 45.36(1) Å. The diffraction pattern of the crystal has strong and sharp Bragg reflections having h-k = 3n and l = 3n and lines of weak superstructure reflections extended parallel to c* and centred at h-k ≠ 3n. The structure contains six layers within the unit cell with the layer stacking sequence of ...AC=CA=AC=CA=AC=CA... The Mg and Al atoms are ordered in metal hydroxide layers to form a honeycomb superstructure. The full superstructure is formed by the combination of two-layer stacking sequence and Mg-Al ordering. This is the first time that a long-range superstructure in carbonate-bearing layered double hydroxide (LDH) has been observed. Taking into account Mg-Al ordering, the unique layer sequence can be written as ...=Ab1C=Cb1A=Ab2C=Cb2A=Ab3C=Cb3A=... The use of an additional suffix is proposed in order to distinguish between LDH polytypes having the same general stacking sequence but with different c parameters compared with the ‘standard’ polytype. According to this notation, the quintinite studied here can be described as quintinite-2H-3c or quintinite-2H-3c[6R], indicating the real symmetry.
American Mineralogist | 2009
Victor N. Yakovenchuk; Alexander P. Nikolaev; Ekaterina A. Selivanova; Yakov A. Pakhomovsky; Julia A. Korchak; Dar’ya V. Spiridonova; Oleg A. Zalkind; Sergey V. Krivovichev
Abstract Ivanyukite-Na-T, Na3[Ti4(OH)O3(SiO4)3]·7H2O, ivanyukite-Na-C, Na2[Ti4O2(OH)2(SiO4)3]·6H2O, ivanyukite-K, K2[Ti4(OH)2O2(SiO4)3]·9H2O, and ivanyukite-Cu, Cu[Ti4(OH)2O2 (SiO4)3]·7H2O, are new microporous titanosilicates found in a natrolitized microcline-aegirine-sodalite lens in the orthoclase-bearing urtite at the Koashva Mountain (Khibiny Massif, Kola Peninsula, Russia). The minerals occur as well-shaped colorless (ivanyukite-Na-T), paleorange (ivanyukite-Na-C), pale-blue (ivanyukite-K), and green (ivanyukite-Cu) cubic crystals (up to 1.5 mm in diameter) grown on microcline, vinogradovite, sazykinaite-(Y), natrolite, and djerfisherite. The minerals have vitreous luster and white streak. They are transparent and non-fluorescent. The Mohs hardness is estimated as ~4. The minerals are brittle. Cleavage is perfect on {100} (ivanyukite-Na-C, ivanyukite-K, and ivanyukite-Cu) or on {1011} (ivanyukite-Na-T), fracture is stepped. Density, measured by the sink/float method in heavy liquids, ranges from 2.60 (ivanyukite-Na-C) to 2.70 g/cm3 (ivanyukite-Na-T, ivanyukite-K, and ivanyukite-Cu), whereas calculated densities are: 2.58 (ivanyukite-Na-T), 2.39 (ivanyukite-Na-C), 2.69 (ivanyukite-K), and 2.46 g/cm3 (ivanyukite- Cu). Ivanyukite-Na-T is uniaxial (+), nω = 1.76(1), nε = 1.85(9) (589 nm), and the other minerals are isotropic, n = 1.73(1). Chemical analysis by electron microprobe gave (wt% for ivanyukite-Na-T, ivanyukite-Na-C, ivanyukite-K, and ivanyukite-Cu, respectively): Na2O 7.46, 5.19, 0.27, and 0.17; Al2O3 0.07, 0.21, 0.18, and 0.07; SiO2 23.75, 25.47, 23.16, and 24.80; SO3 0.00, 0.00, 0.00, and 0.20; K2O 5.89, 6.34, 7.09, and 6.81; CaO 0.21, 0.14, 0.95, and 0.23; TiO2 38.89, 37.81, 36.14, and 38.36; MnO 0.05, 0.33, 0.68, and 0.28; FeO 0.54, 2.17, 0.37, and 0.73; CuO 0.00, 0.00, 2.21, and 6.81; SrO 0.00, 0.00, 0.19, and 0.00; Nb2O5 2.99, 2.90, 3.62, and 3.02; BaO 0.14, 0.00, 0.00, and 0.00; H2O (by the Penfield method) 19.00, 19.15, 25.00, and 21.50; total 98.99, 99.71, 99.86, and 98.97. The empirical formulae (based on Si+Al = 3 apfu) are (Na1.82 K0.95 Ca0.03 Ba0.01)Σ2.81[(Ti3.68 Nb0.17 Fe0.06 Mn0.01)Σ3.92(Si2.99 Al0.01)Σ3.00O14.59(OH)1.37]·7.29H2O (ivanyukite-Na-T), (Na1.17K0.94Ca0.03)Σ2.14[(Ti3.32Fe0.21Nb0.15Mn0.03)Σ3.71(Si2.97Al0.03)Σ3.00 O12.89(OH)2.87]·6.01H2O (ivanyukite-Na-C), (K1.16Cu0.21Ca0.13Na0.07Sr0.01)Σ1.58[(Ti3.49Nb0.21Mn0.07Fe0.04)Σ3.81(Si2.97Al0.03)Σ3.00 O13.19(OH)2.75]·9.32H2O (ivanyukite-K), and (Cu0.62K0.43Na0.04Ca0.03)Σ1.12[(Ti3.48Nb0.16Fe0.07Mn0.03)Σ3.74(Si2.99Al0.01)Σ3.00 O12.88(OH)2.88(SO4)0.02]·7.21H2O (ivanyukite-Cu). Ivanyukite-Na-T is trigonal, R3m, a = 10.94(2), c = 13.97(4) Å, Z = 3. Other minerals are cubic, P4̅3m a = 7.856(6) (ivanyukite-Na-C), 7.808(2) (ivanyukite-K), and 7.850(7) Å (ivanyukite-Cu); Z = 1. The strongest lines in the powder X-ray diffraction pattern [dbs(Å) (Iobs) hkl] are: 7.88(100) (011), 3.277(60)(014), 3.175(80)(212), 2.730(50)(220), 2.607(70)(303), 2.471(50)(124), 1.960(60)(044), 1.916(50) (135) (ivanyukite-Na-T); 7.88(100)(100), 4.53(30)(111), 3.205(80)(211), 2.774(30)(220), 2.622(40)(221, 300), 2.478(40)(310), 1.960(30)(400), 1.843(30)(330, 411) (ivanyukite-Na-C); 7.85(100)(100), 3.91(20)(200), 3.201(80) (211), 2.765(20)(220), 2.602(30)(221, 300), 2.471(40)(310), 1.951(30)(400), 1.839(30)(330, 411) (ivanyukite-K); 7.87(100)(100), 3.94(20)(200), 3.205(80)(211), 2.774(20)(220), 2.616(30)(221, 300), 2.481(30)(310), 1.960(30) (400), 1.843(30)(330, 411) (ivanyukite-Cu). The crystal structure of ivanyukite-Na-T [trigonal, R3m, a = 10.921(3), c = 13.885(4) Å, V = 1434.2(7) Å3] has been solved from highly mosaic crystal and refined to R1 = 0.147 on the basis of 723 unique observed reflections. The crystal structures of ivanyukite-group minerals are based upon a 3-dimensional framework of the pharmacosiderite type, consisting of four edge-sharing TiO6-octahedra interlinked by SiO4 tetrahedra. The framework has a 3-dimensional system of channels defined by 8-membered rings with an effective channel width of 3.5 Å (calculated as the distance between O atoms across the channels minus 2.7 Å). The channels are occupied by Na+ and K+ cations and H2O molecules. The infrared spectra of the ivanyukite group minerals show 14 absorption bands caused by vibrations of Si-O and Ti-O bonds, molecular water, and (OH)- groups. Ivanyukite-Na-T formed as a late-stage, hydrothermal phase of ultra-agpaitic hydrothermalites; ivanyukite-Na-C is produced by partial hydration of ivanyukite-Na-T, and both ivanyukite-K and ivanyukite-Cu are produced by partial hydration of ivanyukite-Na-T and natural cation exchange of Cu for Na near dissolved djerfisherite and chalcopyrite grains. Nomenclature of the ivanyukite group is based on the dominant extraframework cation and symmetry of the crystal structure. The minerals are named in honor of Gregory Yur’evich Ivanyuk, Russian mineralogist and petrologist, head of the Laboratory of Self-Organized Mineral Systems in the Geological Institute of the Kola Science Centre of the Russian Academy of Sciences, for his contributions to the petrology and mineralogy of banded iron-formations, alkaline, and alkaline-ultrabasic massifs.
Mineralogical Magazine | 2010
Sergey V. Krivovichev; V. N. Yakovenchuk; Elena S. Zhitova; Andrey A. Zolotarev; Yakov A. Pakhomovsky; G. Yu. Ivanyuk
Abstract Quintinite-1M, [Mg4Al2(OH)12](CO3)(H2O)3, is the first monoclinic representative of both synthetic and natural layered double hydroxides (LDHs) based on octahedrally coordinated di- and trivalent metal cations. It occurs in hydrothermal veins in the Kovdor alkaline massif, Kola peninsula, Russia. The structure was solved by direct methods and refined to R1 = 0.031 on the basis of 304 unique reflections. It is monoclinic, space group C2/m, a = 5.266(2), b = 9.114(2), c = 7.766(3) Å, β = 103.17(3)º, V = 362.9(2) Å3. The diffraction pattern of quintinite-1M contains sharp reflections corresponding to the layer stacking sequence characteristic of the 3R rhombohedral polytype, and rows of weak superlattice reflections superimposed upon a background of streaks of modulated diffuse intensity parallel to c*. These superlattice reflections indicate the formation of a 2-D superstructure due to Mg-Al ordering. The structure consists of ordered metal hydroxide layers and a disordered interlayer. As the unit cell contains exactly one layer, the polytype nomenclature dictates that the mineral be called quintinite-1M. The complete layer stacking sequence can be described as ...=Ac1B=Ba1C=Cb1A=... Quintinite-1M is isostructural with the monoclinic polytype of [Li2Al4(OH)12](CO3)(H2O)3.
Mineralogical Magazine | 2010
Elena S. Zhitova; V. N. Yakovenchuk; Sergey V. Krivovichev; Andrey A. Zolotarev; Yakov A. Pakhomovsky; G. Yu. Ivanyuk
Abstract Two crystals of Mg, Al-disordered quintinite-2H (Q1 and Q2), [Mg4Al2(OH)12](CO3)(H2O)3, from the Kovdor alkaline massif, Kola peninsula, Russia, have been characterized chemically and structurally. Both crystals have hexagonal symmetry, P63/mcm, a = 3.0455(10)/3.0446(9), c = 15.125(7)/15.178(5) Å, V = 121.49(8)/121.84(6) Å3. The structures of the two crystals have been solved by direct methods and refined to R1 = 0.046 and 0.035 on the basis of 76 and 82 unique observed reflections for Q1 and Q2, respectively. Diffraction patterns obtained using an image-plate area detector showed the almost complete absence of superstructure reflections which would be indicative of the Mg-Al ordering in metal hydroxide layers, as has been observed recently for other quintinite polytypes. The crystal structures are based on double hydroxide layers [M(OH)2] with an average disordered distribution of Mg2+ and Al3+ cations. Average bond lengths for the metal site are 2.017 and 2.020 Å for Q1 and Q2, respectively, and are consistent with a highly Mg-Al disordered, average occupancy. The layer stacking sequence can be expressed as ...=AC=CA=..., corresponding to a Mg-Al-disordered 2H polytype of quintinite. The observed disorder is probably the result of a relatively high temperature of formation for the Q1 and Q2 crystals compared to ordered polytypes. This suggestion is in general agreement with the previous observations which demonstrated, for the Mg-Al system, a higher-temperature regime of formation of the hexagonal (or pseudo-hexagonal in the case of quintinite-2H-3c) 2H polytype in comparison to the rhombohedral (or pseudo-rhombohedral in the case of quintinite-1M) 3R polytype.
American Mineralogist | 2000
Victor V. Subbotin; Stefano Merlino; Dmitry Yu. Pushcharovsky; Yakov A. Pakhomovsky; Orazio Ferro; Alla N. Bogdanova; A. V. Voloshin; Natalia V. Sorokhtina; N. V. Zubkova
Abstract Tumchaite, Na2(Zr,Sn)Si4O11·2H2O, is a new species from the Vuoriyarvi alkali-ultrabasic massif, Murmansk Region, Russia, where it occurs as colorless to white tabular monoclinic crystals associated with calcite, dolomite, a mineral of the serpentine group and pyrite in the late dolomitecalcite carbonatites. It is transparent to translucent; with vitreous luster; and perfect cleavage on (100). Mohs hardness is 4.5, Dmeas is 2.78 (2) g/cm3. Tumchaite is optically biaxial (-), with α = 1.570 (2), β = 1.588 (2), γ = 1.594 (2), 2Vmeas = 60 (5)°, and elongation positive, Y = b, c ∧ Z = 3°. Pleochroism exists, with Y = Z = colorless, X = greenish-gray. Electron microprobe analysis gave (wt%): Na2O 13.72, CaO 0.15, SiO2 52.71, TiO2 0.35, ZrO2 20.41, SnO2 5.73, HfO2 0.60, H2O (computed assuming 2H2O pfu.) 7.86, total 101.53. The X-ray study pointed to space group P21/c, a = 9.144 (4), b = 8.818 (3), c = 7.537 (3) Å, β = 113.22 (3)°, V = 558.49 Å3, Z = 2. The strongest lines of the powder diffraction pattern [d in Å (I) (hkl)] are: 8.40 (10) (100), 5.38 (9) (111̅), 4.00 (8) (111), 3.401 (9) (202̅), 2.902 (9) (211), 2.691 (9) (131̅). The crystal structure of tumchaite was refined to R = 0.043 for 865 Fo > 4σ(Fo). The mineral is isotypic with penkvilksite-1M. The structure is characterized by silicate sheets parallel (100), formed by alternating clockwise- and counterclockwise-growing spiral chains of corner-sharing SiO4 tetrahedra. The sheets are connected by octahedra occupied by (Zr, Sn) at 0, 1/2, 0. The Zr/Sn ratio in the octahedra is 4. Water molecules and Na cations are placed in the cavities of the polyhedral framework. The ideal crystal-chemical formula is Na2 (Zr0.8Sn0.2)[Si4O11]·2H2O. The mineral is named tumchaite for the river Tumcha near Vuoriyarvi massif.
American Mineralogist | 2003
Sergey V. Krivovichev; Victor N. Yakovenchuk; Peter C. Burns; Yakov A. Pakhomovsky; Yury P. Menshikov
Abstract The crystal structure of cafetite, ideally Ca[Ti2O5](H2O), (monoclinic, P21/n, a = 4.9436(15), b = 12.109(4), c = 15.911(5) Å, b = 98.937(5)°, V = 940.9(5) Å3, Z = 8) has been solved by direct methods and refined to R1 = 0.057 using X-ray diffraction data collected from a crystal pseudo-merohedrally twinned on (001). There are four symmetrically independent Ti cations; each is octahedrally coordinated by six O atoms. The coordination polyhedra around the Ti cations are strongly distorted with individual Ti-O bond lengths ranging from 1.743 to 2.223 Å (the average bond length is 1.98 Å). Two symmetrically independent Ca cations are coordinated by six and eight anions for Ca1 and Ca2, respectively. The structure is based on [Ti2O5] sheets of TiO6 octahedra parallel to (001). The Ca atoms and H2O groups are located between the sheets and link them into a three-dimensional structure. The structural formula of cafetite confirmed by electron microprobe analysis is Ca[Ti2O5](H2O), in contrast to the formula (Ca,Mg)(Fe,Al)2Ti4O12 .4H2O suggested by Kukharenko et al. (1959). The wrong chemical formula suggested for cafetite by Kukharenko et al. (1959) is probably due to admixtures of magnetite or titanomagnetite in their samples. Cafetite is chemically related to kassite, CaTi2O4(OH)2, but differs from it in structure and structural formula.
Mineralium Deposita | 2016
Julia A. Mikhailova; A.O. Kalashnikov; Victor A. Sokharev; Yakov A. Pakhomovsky; N. G. Konopleva; Victor N. Yakovenchuk; Ayya V. Bazai; P.M. Goryainov; Gregory Yu. Ivanyuk
The Kovdor baddeleyite–apatite–magnetite deposit in the Kovdor phoscorite–carbonatite pipe is situated in the western part of the zoned alkali-ultrabasic Kovdor intrusion (NW part of the Fennoscandinavian shield; Murmansk Region, Russia). We describe major intrusive and metasomatic rocks of the pipe and its surroundings using a new classification of phoscorite–carbonatite series rocks, consistent with the IUGS recommendation. The gradual zonation of the pipe corresponds to the sequence of mineral crystallization (forsterite–hydroxylapatite–magnetite–calcite). Crystal morphology, grain size, characteristic inclusions, and composition of the rock-forming and accessory minerals display the same spatial zonation pattern, as do the three minerals of economic interest, i.e. magnetite, hydroxylapatite, and baddeleyite. The content of Sr, rare earth elements (REEs), and Ba in hydroxylapatite tends to increase gradually at the expense of Si, Fe, and Mg from early apatite–forsterite phoscorite (margins of the pipe) through carbonate-free, magnetite-rich phoscorite to carbonate-rich phoscorite and phoscorite-related carbonatite (inner part). Magnetite displays a trend of increasing V and Ca and decreasing Ti, Mn, Si, Cr, Sc, and Zn from the margins to the central part of the pipe; its grain size initially increases from the wall rocks to the inner part and then decreases towards the central part; characteristic inclusions in magnetite are geikielite within the marginal zone of the phoscorite–carbonatite pipe, spinel within the intermediate zone, and ilmenite within the inner zone. The zoning pattern seems to have formed due to both cooling and rapid degassing (pressure drop) of a fluid-rich magmatic column and subsequent pneumatolytic and hydrothermal processes.
Mineralogical Magazine | 2012
V. N. Yakovenchuk; E. Keck; Sergey V. Krivovichev; Yakov A. Pakhomovsky; Ekaterina A. Selivanova; Julia A. Mikhailova; A. P. Chernyatieva; G. Yu. Ivanyuk
Abstract Whiteite-(CaMnMn), CaMnMn2Al2[PO4]4(OH)2·8H2O, is a new hydrous phosphate of Ca, Mn and Al, which is closely related to both jahnsite-(CaMnMn) and the minerals of the whiteite group. It is monoclinic, P2/a, with a = 15.02(2), b = 6.95(1), c =10.13(3) Å, β = 111.6(1)º, V = 983.3(6) Å3, Z = 2 (from powder diffraction data) or a = 15.020(5), b = 6.959(2), c = 10.237(3) Å, β = 111.740(4)º, V = 984.3(5) Å3, Z = 2 (from single-crystal diffraction data). The mineral was found in the Hagendorf Süd granitic pegmatite (Germany) as small (up to 0.5 mm in size) crystals elongated on a and tabular on {010}. The crystals are either simply or polysynthetically twinned on {001}. They crystallize on the walls of voids within altered zwieselite crystals or form coronas (up to 1 mm in diameter) around cubic crystals of uraninite. The mineral is transparent, colourless to pale yellow (depending on Al-Fe3+ substitution), with a vitreous lustre and a white streak. The cleavage is perfect on {001}, the fracture is stepped and the Mohs hardness is 3½. In transmitted light, the mineral is colourless; dispersion was not observed. Whiteite-(CaMnMn) is biaxial (+), α = 1.589(2), β = 1.592(2), γ = 1.601(2) (589 nm), 2Vmeas = 60(10)º, 2Vcalc = 60.3º. The optical orientation is X = b, Z^a = 5º. The calculated and measured densities are Dcalc = 2.768 and Dmeas = 2.70(3) g cm-3, respectively. The mean chemical composition determined by electron microprobe is Na2O 0.53, MgO 0.88, Al2O3 11.66, P2O5 34.58, CaO 4.29, MnO 17.32, FeO 8.32, ZnO 2.60 wt.%, with H2O 19.50 wt.% (determined by the Penfield method), giving a total of 99.68 wt.%. The empirical formula calculated on the basis of four phosphorus atoms per formula unit, with ferric iron calculated to maintain charge balance, is (Ca0.63Zn0.26Na0.14)∑1.03(Mn0.60Fe0.402+)∑1.00(Mn1.40Fe0.372+Mg0.18Fe0.063+)∑2.01(Al1.88Fe0.123+)∑2.00[PO4]4(OH)2·7.89H2O. The simplified formula is CaMnMn2Al2[PO4]4(OH)2·8H2O. The mineral is easily soluble in 10% HCl at room temperature. The strongest X-ray powder-diffraction lines [listed as d in Å (I) (hkl)] are as follows: 9.443(65)(001), 5.596(25)(011), 4.929(80)(210), 4.719(47)(002), 3.494(46)(400), 2.7958(100)(022). The crystal structure of whiteite-(CaMnMn) was refined for a single crystal twinned on (001) to R1 = 0.068 on the basis of 5702 unique observed reflections. It is similar to the structures of other members of the whiteite group. The mineral is named for the chemical composition, in accordance with whiteitegroup nomenclature.
American Mineralogist | 2006
Yuri P. Men’shikov; Sergey V. Krivovichev; Yakov A. Pakhomovsky; Victor N. Yakovenchuk; Gregory Yu. Ivanyuk; Julia A. Mikhailova; Thomas Armbruster; Ekaterina A. Selivanova
Abstract Chivruaiite is a new Ca titanosilicate [orthorhombic, Cmmm, a = 7.17(2), b = 22.98(9), c = 6.94(2) Å, V = 1144.4 Å3, Z = 1], chemically and structurally related to zorite. The mineral is found in three different hydrothermal veins within the Khibiny and Lovozero alkaline massifs, Kola Peninsula, Russia. It is associated with microcline, eudialyte, natrolite, astrophyllite, aegirine, etc. Chivruaiite occurs as elongate-prismatic crystals (up to 3 mm long) with {100}, {010}, {001}, {101}, and {011} as dominant faces, as well as radiating aggregates. The mineral is transparent, pale-pink to colorless, with vitreous luster and white streak. Cleavage is distinct on {100} and {010}; fracture is step-like. Mohs hardness is about 3. In transmitted light, the mineral is pale-pink, with a faint pleochroism: Z = pale-pink, on X and Y = colorless; dispersion r < v. Chivruaiite is biaxial (+): α =1.705(5), β = 1.627(2), γ = 1.612(2) (for λ = 589 nm), 2Vmeas = 40 ± 5°, 2Vcalc = 31.7°. Optical orientation: X = b, Y = a, Z = c, Dcalc = 2.42 g/cm3, Dmeas = 2.40.2.42 g/cm3. The mean chemical composition determined by electron microprobe is (wt%): SiO2 45.14; TiO2 20.63; Al2O3 0.07; Fe2O3 0.18; MnO 0.02; MgO 0.01; CaO 10.53; Na2O 0.10; K2O 1.30; SrO 0.28; Nb2O5 3.63; H2O 17.30; sum. 99.19. Empirical formula calculated on the basis of Si = 12 is (Ca3.00K0.44 Na0.05Sr0.04Mn0.01)Σ=3.54(Ti4.13Nb0.44Fe3+0.04 Al0.02)Σ=4.63[Si12O34 |(OH)4.51O0.49]·13.08H2O. Simplified formula is Ca4(Ti,Nb)5[(Si6O17)2|(OH,O)5]·13-14H2O. The strongest X-ray powder-diffraction lines [d in Å, (I), (hkl)] are 11.6 (100) (020), 6.91 (90) (110, 001), 5.23 (50) (130), 3.41 (50) (220), 3.35 (50) (061, 151), 3.04 (80) (221, 240). The structure of chivruaiite was refined to R1 = 0.038 on the basis of 687 unique observed reflections. It is based upon an open framework of SiO4 tetrahedra, TiO6 octahedra, and TiO5 pyramids. Framework cavities are occupied by Ca2+ and K+ cations, and H2O molecules. The mineral is named after its type locality in the Chivruai River valley (the Lovozero massif, Kola Peninsula, Russia). Chivruaiite is a Ca-analog of zorite and ETS-4 and is closely related to haineaultite.