Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yakov Krelin is active.

Publication


Featured researches published by Yakov Krelin.


Proceedings of the National Academy of Sciences of the United States of America | 2003

IL-1 is required for tumor invasiveness and angiogenesis

Elena Voronov; Dror S. Shouval; Yakov Krelin; Emanuela Cagnano; Daniel Benharroch; Yoichiro Iwakura; Charles A. Dinarello; Ron N. Apte

Here, we describe that microenvironmental IL-1β and, to a lesser extent, IL-1α are required for in vivo angiogenesis and invasiveness of different tumor cells. In IL-1β knockout (KO) mice, local tumor or lung metastases of B16 melanoma cells were not observed compared with WT mice. Angiogenesis was assessed by the recruitment of blood vessel networks into Matrigel plugs containing B16 melanoma cells; vascularization of the plugs was present in WT mice, but was absent in IL-1β KO mice. The addition of exogenous IL-1 into B16-containing Matrigel plugs in IL-1β KO mice partially restored the angiogenic response. Moreover, the incorporation of IL-1 receptor antagonist to B16-containing plugs in WT mice inhibited the ingrowth of blood vessel networks into Matrigel plugs. In IL-1α KO mice, local tumor development and induction of an angiogenic response in Matrigel plugs was less pronounced than in WT mice, but significantly higher than in IL-1β KO mice. These effects of host-derived IL-1α and IL-1β were not restricted to the melanoma model, but were also observed in DA/3 mammary and prostate cancer cell models. In addition to the in vivo findings, IL-1 contributed to the production of vascular endothelial cell growth factor and tumor necrosis factor in cocultures of peritoneal macrophages and tumor cells. Host-derived IL-1 seems to control tumor angiogenesis and invasiveness. Furthermore, the anti-angiogenic effects of IL-1 receptor antagonist, shown here, suggest a possible therapeutic role in cancer, in addition to its current use in rheumatoid arthritis.


Journal of Immunology | 2005

CD11b+/Gr-1+ Immature Myeloid Cells Mediate Suppression of T Cells in Mice Bearing Tumors of IL-1β-Secreting Cells

Xiaoping Song; Yakov Krelin; Tatyana Dvorkin; Olle Bjorkdahl; Shraga Segal; Charles A. Dinarello; Elena Voronov; Ron N. Apte

Tumor cells secreting IL-1β are invasive and metastatic, more than the parental line or control mock-transfected cells, and concomitantly induce in mice general immune suppression of T cell responses. Suppression strongly correlates with accumulation in the peripheral blood and spleen of CD11b+/Gr-1+ immature myeloid cells and hematological alterations, such as splenomegaly, leukocytosis, and anemia. Resection of large tumors of IL-1β-secreting cells restored immune reactivity and hematological alterations within 7–10 days. Treatment of tumor-bearing mice with the physiological inhibitor of IL-1, the IL-1R antagonist, reduced tumor growth and attenuated the hematological alterations. Depletion of CD11b+/Gr-1+ immature myeloid cells from splenocytes of tumor-bearing mice abrogated suppression. Despite tumor-mediated suppression, resection of large tumors of IL-1β-secreting cells, followed by a challenge with the wild-type parental cells, induced resistance in mice; protection was not observed in mice bearing tumors of mock-transfected fibrosarcoma cells. Altogether, we show in this study that tumor-derived IL-1β, in addition to its proinflammatory effects on tumor invasiveness, induces in the host hematological alterations and tumor-mediated suppression. Furthermore, the antitumor effectiveness of the IL-1R antagonist was also shown to encompass restoration of hematological alterations, in addition to its favorable effects on tumor invasiveness and angiogenesis that have previously been described by us.


Cancer Research | 2007

Interleukin-1β–Driven Inflammation Promotes the Development and Invasiveness of Chemical Carcinogen–Induced Tumors

Yakov Krelin; Elena Voronov; Shahar Dotan; Moshe Elkabets; Eli Reich; Mina Fogel; Monika Huszar; Yoichiro Iwakura; Shraga Segal; Charles A. Dinarello; Ron N. Apte

The role of microenvironment interleukin 1 (IL-1) on 3-methylcholanthrene (3-MCA)-induced carcinogenesis was assessed in IL-1-deficient mice, i.e., IL-1beta(-/-), IL-1alpha(-/-), IL-1alpha/beta(-/-) (double knockout), and mice deficient in the naturally occurring inhibitor of IL-1, the IL-1 receptor antagonist (IL-1Ra). Tumors developed in all wild-type (WT) mice, whereas in IL-1beta-deficient mice, tumors developed slower and only in some of the mice. In IL-1Ra-deficient mice, tumor development was the most rapid. Tumor incidence was similar in WT and IL-1alpha-deficient mice. Histologic analyses revealed fibrotic structures forming a capsule surrounding droplets of the carcinogen in olive oil, resembling foreign body-like granulomas, which appeared 10 days after injection of 3-MCA and persisted until the development of local tumors. A sparse leukocyte infiltrate was found at the site of carcinogen injection in IL-1beta-deficient mice, whereas in IL-1Ra-deficient mice, a dense neutrophilic infiltrate was observed. Treatment of IL-1Ra-deficient mice with recombinant IL-1Ra but not with an inhibitor of tumor necrosis factor abrogated the early leukocytic infiltrate. The late leukocyte infiltrate (day 70), which was dominated by macrophages, was also apparent in WT and IL-1alpha-deficient mice, but was nearly absent in IL-1beta-deficient mice. Fibrosarcoma cell lines, established from 3-MCA-induced tumors from IL-1Ra-deficient mice, were more aggressive and metastatic than lines from WT mice; cell lines from IL-1-deficient mice were the least invasive. These observations show the crucial role of microenvironment-derived IL-1beta, rather than IL-1alpha, in chemical carcinogenesis and in determining the invasive potential of malignant cells.


Biochimica et Biophysica Acta | 2015

The mitochondrial voltage-dependent anion channel 1 in tumor cells ☆

Varda Shoshan-Barmatz; Danya Ben-Hail; Lee Admoni; Yakov Krelin; Shambhoo Sharan Tripathi

VDAC1 is found at the crossroads of metabolic and survival pathways. VDAC1 controls metabolic cross-talk between mitochondria and the rest of the cell by allowing the influx and efflux of metabolites, ions, nucleotides, Ca2+ and more. The location of VDAC1 at the outer mitochondrial membrane also enables its interaction with proteins that mediate and regulate the integration of mitochondrial functions with cellular activities. As a transporter of metabolites, VDAC1 contributes to the metabolic phenotype of cancer cells. Indeed, this protein is over-expressed in many cancer types, and silencing of VDAC1 expression induces an inhibition of tumor development. At the same time, along with regulating cellular energy production and metabolism, VDAC1 is involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. The engagement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space involves VDAC1 oligomerization that mediates the release of cytochrome c and AIF to the cytosol, subsequently leading to apoptotic cell death. Apoptosis can also be regulated by VDAC1, serving as an anchor point for mitochondria-interacting proteins, such as hexokinase (HK), Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. By binding to VDAC1, HK provides both a metabolic benefit and apoptosis-suppressive capacity that offer the cell a proliferative advantage and increase its resistance to chemotherapy. Thus, these and other functions point to VDAC1 as an excellent target for impairing the re-programed metabolism of cancer cells and their ability to evade apoptosis. Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to both cancer development and therapy. In addressing the recently solved 3D structures of VDAC1, this review will point to structure-function relationships of VDAC as critical for deciphering how this channel can perform such a variety of roles, all of which are important for cell life and death. Finally, this review will also provide insight into VDAC function in Ca2+ homeostasis, protection against oxidative stress, regulation of apoptosis and involvement in several diseases, as well as its role in the action of different drugs. We will discuss the use of VDAC1-based strategies to attack the altered metabolism and apoptosis of cancer cells. These strategies include specific siRNA able to impair energy and metabolic homeostasis, leading to arrested cancer cell growth and tumor development, as well VDAC1-based peptides that interact with anti-apoptotic proteins to induce apoptosis, thereby overcoming the resistance of cancer cell to chemotherapy. Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


International Immunology | 2010

IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice

Elena Voronov; Shahar Dotan; Lubov Gayvoronsky; Rosalyn M. White; Idan Cohen; Yakov Krelin; Fabrice Benchetrit; Moshe Elkabets; Monika Huszar; Joseph El-On; Ron N. Apte

The role of host-derived IL-1 on the course of Leishmania major infection in susceptible BALB/c mice was assessed. Manifestations of the disease were more severe in mice deficient in the physiological inhibitor of IL-1, the IL-1 receptor antagonist (IL-1Ra) in comparison with control mice. In mice lacking one of the IL-1 genes (IL-1alpha or IL-1beta), there was delayed development of the disease and more attenuated systemic inflammatory responses. IL-1alpha-deficient mice were slightly more resistant to L. major infection compared with IL-1beta-knockout mice. During disease progression in IL-1Ra KO and control mice, myeloid-derived suppressor cells invaded the spleen, concomitant to suppression of T cell-mediated immunity and expression of systemic high levels of pro-inflammatory cytokines. In IL-1-deficient mice, T(h)1 responses were still apparent, even at late stages of the disease. Thus, dose-dependent effects of IL-1 were shown to influence the pathogenesis of murine leishamaniasis in susceptible BALB/c mice. Physiological and supra-physiological levels of IL-1 in the microenvironment promoted an exacerbated form of disease, whereas sub-physiological doses of IL-1 induced a less progressive disease. Thus, manipulation of IL-1 levels in the host, using the IL-1Ra or specific antibodies, has the potential to alleviate symptoms of visceral manifestations of leishmaniasis.


Frontiers in Immunology | 2013

Unique Versus Redundant Functions of IL-1α and IL-1β in the Tumor Microenvironment

Elena Voronov; Shahar Dotan; Yakov Krelin; Xiaoping Song; Moshe Elkabets; Yaron Carmi; Peleg Rider; Idan Cohen; Marianna Romzova; Irena Kaplanov; Ron N. Apte

Interleukin-1 (IL-1) is a major “alarm” upstream pro-inflammatory cytokine that also affects immunity and hematopoiesis by inducing cytokine cascades. In the tumor arena, IL-1 is produced by malignant or microenvironmental cells. As a pleiotropic cytokine, IL-1 is involved in tumorigenesis and tumor invasiveness but also in the control of anti-tumor immunity. IL-1α and IL-1β are the major agonists of IL-1, while IL-1Ra is a physiological inhibitor of pre-formed IL-1. In their secreted form, IL-1α and IL-1β bind to the same receptors and induce the same biological functions, but IL-1α and IL-1β differ in their compartmentalization within the producing cell or the microenvironment. IL-1β is only active in its processed, secreted form, and mediates inflammation, which promotes carcinogenesis, tumor invasiveness, and immunosuppression, whereas IL-1α is mainly cell-associated and in the tumor context, when expressed on the cell membrane, it stimulates anti-tumor cell immunity manifested by tumor regression. In the tumor milieu, extracellular levels of IL-1α are usually low and do not stimulate broad inflammation that promotes progression. Immunosuppression induced by IL-1β in the tumor microenvironment, mainly through MDSC induction, usually inhibits or masks anti-tumor cell immunity induced by cell-associated IL-1α. However, in different tumor systems, redundant or unique patterns of IL-1α and IL-1β expression and function have been observed. Recent breakthroughs in inflammasome biology and IL-1β processing/secretion have spurred the development of novel anti-IL-1 agents, which are being used in clinical trials in patients with diverse inflammatory diseases. Better understanding of the integrative role of IL-1α and IL-1β in distinct malignancies will facilitate the application of novel IL-1 modulation approaches at the bedside, in cancer patients with minimal residual disease (MRD), as an adjunct to conventional approaches to reduce the tumor burden.


Journal of Immunology | 2009

Host-Derived Interleukin-1α Is Important in Determining the Immunogenicity of 3-Methylcholantrene Tumor Cells

Moshe Elkabets; Yakov Krelin; Shahar Dotan; Adelheid Cerwenka; Angel Porgador; Rachel G. Lichtenstein; Malka R. White; Margot Zöller; Yoichizo Iwakura; Charles A. Dinarello; Elena Voronov; Ron N. Apte

Using IL-1/IL-1Ra knockout BALB/c mice, we showed that 3-methylcholatrene (3-MCA)-induced carcinogenesis is dependent on IL-1β-induced inflammatory responses. Patterns of local inflammation and tumorigenicity were similar in wild-type (WT) and IL-1α−/− mice, while in IL-1β−/− mice, tumorigenicity was attenuated and in IL-1Ra−/− mice accentuated. 3-MCA-induced fibrosarcoma cell lines from WT mice developed into progressive tumors in WT mice, while surprisingly, lines from IL-1α−/− mice formed tumors only in immunocompromized mice. 3-MCA-induced fibrosarcoma cell lines from IL-1α−/− mice, compared with lines from WT mice, manifested higher expression levels of “global” surface molecules related to Ag presentation and interactions with immune surveillance cells (MHC class I, B7.1, B7.2, L-selectin, and NKG2D ligands) and were eradicated mainly by CD4+- and CD8+-dependent T cell responses. Concomitantly, at the injection site of 3-MCA-induced fibrosarcoma cells derived from IL-1α−/− mice, a leukocyte infiltrate, subsequently replaced by a scar-like tissue, was observed. Immune aberrations in NK cell maturation, antitumor specific immunity and killing capacity of effector cells were observed in IL-1α−/− mice, in contrast to WT mice. Thus, we demonstrate in this study the significance of host-derived IL-1α in cancer immunoediting, by affecting innate and specific immunosurveillance mechanisms. Overall, the results presented in this study, together with our previous studies, attest to differential involvement of IL-1α and IL-1β in tumorigenesis; host-derived IL-1β mainly controls inflammation, while concomitantly, IL-1α controls immunosurveillance of the arising malignant cells. Elucidation of the involvement of the IL-1 molecules in the malignant process will hopefully lead to the development of novel approaches for chemoprevention and immunotherapy.


Cell Calcium | 2018

VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease

Varda Shoshan-Barmatz; Yakov Krelin; Anna Shteinfer-Kuzmine

In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.


Frontiers in Oncology | 2017

Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics

Varda Shoshan-Barmatz; Yakov Krelin; Anna Shteinfer-Kuzmine; Tasleem Arif

Cancer cells share several properties, high proliferation potential, reprogramed metabolism, and resistance to apoptotic cues. Acquiring these hallmarks involves changes in key oncogenes and non-oncogenes essential for cancer cell survival and prosperity, and is accompanied by the increased energy requirements of proliferating cells. Mitochondria occupy a central position in cell life and death with mitochondrial bioenergetics, biosynthesis, and signaling are critical for tumorigenesis. Voltage-dependent anion channel 1 (VDAC1) is situated in the outer mitochondrial membrane (OMM) and serving as a mitochondrial gatekeeper. VDAC1 allowing the transfer of metabolites, fatty acid ions, Ca2+, reactive oxygen species, and cholesterol across the OMM and is a key player in mitochondrial-mediate apoptosis. Moreover, VDAC1 serves as a hub protein, interacting with diverse sets of proteins from the cytosol, endoplasmic reticulum, and mitochondria that together regulate metabolic and signaling pathways. The observation that VDAC1 is over-expressed in many cancers suggests that the protein may play a pivotal role in cancer cell survival. However, VDAC1 is also important in mitochondria-mediated apoptosis, mediating release of apoptotic proteins and interacting with anti-apoptotic proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-xL, and hexokinase (HK), which are also highly expressed in many cancers. Strategically located in a “bottleneck” position, controlling metabolic homeostasis and apoptosis, VDAC1 thus represents an emerging target for anti-cancer drugs. This review presents an overview on the multi-functional mitochondrial protein VDAC1 performing several functions and interacting with distinct sets of partners to regulate both cell life and death, and highlights the importance of the protein for cancer cell survival. We address recent results related to the mechanisms of VDAC1-mediated apoptosis and the potential of associated proteins to modulate of VDAC1 activity, with the aim of developing VDAC1-based approaches. The first strategy involves modification of cell metabolism using VDAC1-specific small interfering RNA leading to inhibition of cancer cell and tumor growth and reversed oncogenic properties. The second strategy involves activation of cancer cell death using VDAC1-based peptides that prevent cell death induction by anti-apoptotic proteins. Finally, we discuss the potential therapeutic benefits of treatments and drugs leading to enhanced VDAC1 expression or targeting VDAC1 to induce apoptosis.


Neuro-oncology | 2017

VDAC1 is a molecular target in glioblastoma, with its depletion leading to reprogrammed metabolism and reversed oncogenic properties

Tasleem Arif; Yakov Krelin; Itay Nakdimon; Daniel Benharroch; Avijit Paul; Daniela Dadon-Klein; Varda Shoshan-Barmatz

Background Glioblastoma (GBM), an aggressive brain tumor with frequent relapses and a high mortality, still awaits an effective treatment. Like many cancers, GBM cells acquire oncogenic properties, including metabolic reprogramming, vital for growth. As such, tumor metabolism is an emerging avenue for cancer therapy. One relevant target is the voltage-dependent anion channel 1 (VDAC1), a mitochondrial protein controlling cell energy and metabolic homeostasis. Methods We used VDAC1-specific short interfering (si)RNA (si-VDAC1) to treat GBM cell lines and subcutaneous or intracranial-orthotopic GBM xenograft mouse models. Tumors were monitored using MRI, immunohistochemistry, immunoblotting, immunofluorescence, quantitative real-time PCR, transcription factor expression, and DNA microarray analyses. Results Silencing VDAC1 expression using si-VDAC1 in 9 glioblastoma-related cell lines, including patient-derived cells, led to marked decreases in VDAC1 levels and cell growth. Using si-VDAC1 in subcutaneous or intracranial-orthotopic GBM models inhibited tumor growth and reversed oncogenic properties, such as reprogrammed metabolism, stemness, angiogenesis, epithelial-mesenchymal transition, and invasiveness. In cells in culture, si-VDAC1 inhibits cancer neurosphere formation and, in tumors, targeted cancer stem cells, leading to their differentiation into neuronal-like cells. These VDAC1 depletion-mediated effects involved alterations in transcription factors regulating signaling pathways associated with cancer hallmarks. Conclusion VDAC1 offers a target for GBM treatment, allowing for attacks on the interplay between metabolism and oncogenic signaling networks, leading to tumor cell differentiation into neuron- and astrocyte-like cells. Simultaneously attacking all of these processes, VDAC1 depletion overcame GBM heterogeneity and can replace several anticancer drugs that separately target angiogenesis, proliferation, or metabolism.

Collaboration


Dive into the Yakov Krelin's collaboration.

Top Co-Authors

Avatar

Varda Shoshan-Barmatz

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Elena Voronov

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ron N. Apte

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Moshe Elkabets

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Shahar Dotan

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Tasleem Arif

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Charles A. Dinarello

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Avijit Paul

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Shraga Segal

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Xiaoping Song

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge