Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yalda Khosravi is active.

Publication


Featured researches published by Yalda Khosravi.


The Scientific World Journal | 2014

Culturable Bacterial Microbiota of the Stomach of Helicobacter pylori Positive and Negative Gastric Disease Patients

Yalda Khosravi; Bee Hoon Poh; Chow Goon Ng; Mun Fai Loke; Khean-Lee Goh; Jamuna Vadivelu

Human stomach is the only known natural habitat of Helicobacter pylori (Hp), a major bacterial pathogen that causes different gastroduodenal diseases. Despite this, the impact of Hp on the diversity and the composition of the gastric microbiota has been poorly studied. In this study, we have analyzed the culturable gastric microbiota of 215 Malaysian patients, including 131 Hp positive and 84 Hp negative individuals that were affected by different gastric diseases. Non-Hp bacteria isolated from biopsy samples were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry based biotyping and 16SrRNA sequencing. The presence of Hp did not significantly modify the diversity of the gastric microbiota. However, correlation was observed between the isolation of Streptococci and peptic ulcer disease. In addition, as a first report, Burkholderia pseudomallei was also isolated from the gastric samples of the local population. This study suggested that there may be geographical variations in the diversity of the human gastric microbiome. Geographically linked diversity in the gastric microbiome and possible interactions between Hp and other bacterial species from stomach microbiota in pathogenesis are proposed for further investigations.


Journal of Medical Microbiology | 2011

Analysis of integrons and associated gene cassettes of metallo-β-lactamase-positive Pseudomonas aeruginosa in Malaysia.

Yalda Khosravi; Sun Tee Tay; Jamuna Vadivelu

In this study, 90 non-replicate imipenem-resistant Pseudomonas aeruginosa (IRPA) Malaysian isolates collected between October 2005 and March 2008 were subjected to a screening test for detection of the integron and the gene cassette. Class 1 integrons were detected in 54 IRPA clinical isolates, whilst three isolates contained class 2 integrons. Analysis of the gene cassettes associated with the class 1 integrons showed the detection of accC1 in isolates carrying bla(IMP-7) and aacA7 in isolates carrying bla(VIM-2). aadA6 was detected in two isolates carrying bla(IMP-4). Using random amplification of polymorphic DNA analysis, 14 PCR fingerprint patterns were generated from the 32 isolates carrying metallo-β-lactamase (MBL) genes (35.5 %), whilst 20 patterns were generated from the 58 non-MBL gene isolates (64.4 %). Based on the differences in the fingerprinting patterns, two clusters (A and B) were identified among the MBL-producing isolates. Cluster A comprised 18 isolates (56 %) carrying the bla(VIM) gene, whereas cluster B comprised 14 (44 %) isolates carrying the bla(IMP) gene. The non-MBL isolates were divided into clusters C and D. Cluster C comprised 22 non-MBL isolates harbouring class 1 integrons, whilst cluster D consisted of three isolates carrying class 2 integrons. These findings suggest that the class 1 integron is widespread among P. aeruginosa isolated in Malaysia and that characterization of cassette arrays of integrons will be a useful epidemiological tool to study the evolution of multidrug resistance and the dissemination of antibiotic resistance genes.


The Scientific World Journal | 2012

Phenotypic Detection of Metallo-β-Lactamase in Imipenem-Resistant Pseudomonas aeruginosa

Yalda Khosravi; Mun Fai Loke; Eng Guan Chua; Sun Tee Tay; Jamuna Vadivelu

Carbapenems are the primary choice of treatment for severe Pseudomonas aeruginosa infection. However, the emergence of carbapenem resistance due to the production of metallo-β-lactamases (MBLs) is of global concern. In this study, 90 imipenem- (IPM- or IP-) resistant P. aeruginosa (IRPA) isolates, including 32 previously tested positive and genotyped for MBL genes by PCR, were subjected to double-disk synergy test (DDST), combined disk test (CDT), and imipenem/imipenem-inhibitor (IP/IPI) E-test to evaluate their MBLs detection capability. All three methods were shown to have a sensitivity of 100%. However, DDST was the most specific of the three (96.6%), followed by IP/IPI E-test interpreted based on the single criteria of IP/IPI ≥8 as positive (62.1%), and CDT was the least specific (43.1%). Based on the data from this evaluation, we propose that only IRPA with IP MIC >16 μg/mL and IP/IPI ≥8 by IP/IPI E-test should be taken as positive for MBL activity. With the new dual interpretation criteria, the MBL IP/IPI E-test was shown to achieve 100% sensitivity as well as specificity for the IRPA in this study. Therefore, the IP/IPI E-test is a viable alternative phenotypic assay to detect MBL production in IRPA in our population in circumstances where PCR detection is not a feasible option.


Scientific Reports | 2015

Helicobacter pylori infection can affect energy modulating hormones and body weight in germ free mice

Yalda Khosravi; Shih Wee Seow; Arlaine Anne Amoyo; Kher Hsin Chiow; Tuan Lin Tan; Whye Yen Wong; Qian Hui Poh; Ignatius Mario Doli Sentosa; Ralph M. Bunte; Sven Pettersson; Mun Fai Loke; Jamuna Vadivelu

Helicobacter pylori, is an invariably commensal resident of the gut microbiome associated with gastric ulcer in adults. In addition, these patients also suffered from a low grade inflammation that activates the immune system and thus increased shunting of energy to host defense mechanisms. To assess whether a H. pylori infection could affect growth in early life, we determined the expression levels of selected metabolic gut hormones in germ free (GF) and specific pathogen-free (SPF) mice with and without the presence of H. pylori. Despite H. pylori-infected (SPFH) mice display alteration in host metabolism (elevated levels of leptin, insulin and peptide YY) compared to non-infected SPF mice, their growth curves remained the same. SPFH mice also displayed increased level of eotaxin-1. Interestingly, GF mice infected with H. pylori (GFH) also displayed increased levels of ghrelin and PYY. However, in contrast to SPFH mice, GFH showed reduced weight gain and malnutrition. These preliminary findings show that exposure to H. pylori alters host metabolism early in life; but the commensal microbiota in SPF mice can attenuate the growth retarding effect from H. pylori observed in GF mice. Further investigations of possible additional side effects of H. pylori are highly warranted.


PLOS ONE | 2014

Functional and Molecular Surveillance of Helicobacter pylori Antibiotic Resistance in Kuala Lumpur

Xinsheng Teh; Yalda Khosravi; Woon Ching Lee; Alex Hwong Ruey Leow; Mun Fai Loke; Jamuna Vadivelu; Khean-Lee Goh

Background Helicobacter pylori is the etiological agent for diseases ranging from chronic gastritis and peptic ulcer disease to gastric adenocarcinoma and primary gastric B-cell lymphoma. Emergence of resistance to antibiotics possesses a challenge to the effort to eradicate H. pylori using conventional antibiotic-based therapies. The molecular mechanisms that contribute to the resistance of these strains have yet to be identified and are important for understanding the evolutional pattern and selective pressure imposed by the environment. Methods and Findings H. pylori was isolated from 102 patients diagnosed with gastrointestinal diseases, who underwent endoscopy at University Malaya Medical Centre (UMMC). The isolates were tested for their susceptibility on eleven antibiotics using Etest. Based on susceptibility test, 32.3% of the isolates were found to have primary metronidazole resistance; followed by clarithromycin (6.8%) and fluoroquinolones (6.8%). To further investigate the resistant strains, mutational patterns of gene rdxA, frxA, gyrA, gyrB, and 23S rRNA were studied. Consistent with the previous reports, metronidazole resistance was prevalent in the local population. However, clarithromycin, fluoroquinolone and multi-drug resistance were shown to be emerging. Molecular patterns correlated well with phenotypic data. Interestingly, multi-drug resistant (MDR) strains were found to be associated with higher minimum inhibitory concentration (MIC) than their single-drug resistant (SDR) counterparts. Most importantly, clarithromycin-resistant strains were suggested to have a higher incidence for developing multi-drug resistance. Conclusion Data from this study highlighted the urgency to monitor closely the prevalence of antibiotic resistance in the Malaysian population; especially that of clarithromycin and multi-drug resistance. Further study is needed to understand the molecular association between clarithromycin resistance and multi-drug resistance in H. pylori. The report serves a reminder that a strict antibiotic usage policy is needed in Malaysia and other developing countries (especially those where H. pylori prevalence remained high).


Diagnostic Microbiology and Infectious Disease | 2010

Metallo-β-lactamase–producing imipenem-resistant Pseudomonas aeruginosa clinical isolates in a university teaching hospital in Malaysia: detection of IMP-7 and first identification of IMP-4, VIM-2, and VIM-11

Yalda Khosravi; Sun Tee Tay; Jamuna Vadivelu

Ninety (n = 90) imipenem-resistant Pseudomonas aeruginosa (IRPA) clinical isolates collected randomly during 2005 to 2008 from University Malaya Medical Center were assessed for the presence of different variants of metallo-beta-lactamase (MBL) genes. Polymerase chain reaction (PCR) assay detected 32 (n = 32) MBL gene PCR-positive isolates with the presence of bla(IMP) gene in 14 (n = 14) and bla(VIM) in 18 (n = 18) isolates. Four allelic variants, bla(IMP-7) (12 isolates), bla(IMP-4) (2 isolates), bla(VIM-2) (17 isolates), and bla(VIM-11) (1 isolate), of MBL genes were identified. This study is the first report of detection of bla(IMP-4), bla(VIM-2), and bla(VIM-11) MBL genes from IRPA clinical isolates in Malaysia.


PLOS ONE | 2014

Streptococcus mitis Induces Conversion of Helicobacter pylori to Coccoid Cells during Co-Culture In Vitro

Yalda Khosravi; Mun Fai Loke; Khean-Lee Goh; Jamuna Vadivelu

Helicobacter pylori (H. pylori) is a major gastric pathogen that has been associated with humans for more than 60,000 years. H. pylori causes different gastric diseases including dyspepsia, ulcers and gastric cancers. Disease development depends on several factors including the infecting H. pylori strain, environmental and host factors. Another factor that might influence H. pylori colonization and diseases is the gastric microbiota that was overlooked for long because of the belief that human stomach was a hostile environment that cannot support microbial life. Once established, H. pylori mainly resides in the gastric mucosa and interacts with the resident bacteria. How these interactions impact on H. pylori-caused diseases has been poorly studied in human. In this study, we analyzed the interactions between H. pylori and two bacteria, Streptocccus mitis and Lactobacillus fermentum that are present in the stomach of both healthy and gastric disease human patients. We have found that S. mitis produced and released one or more diffusible factors that induce growth inhibition and coccoid conversion of H. pylori cells. In contrast, both H. pylori and L. fermentum secreted factors that promote survival of S. mitis during the stationary phase of growth. Using a metabolomics approach, we identified compounds that might be responsible for the conversion of H. pylori from spiral to coccoid cells. This study provide evidences that gastric bacteria influences H. pylori physiology and therefore possibly the diseases this bacterium causes.


Gut Pathogens | 2014

Erratum to: Comparing the genomes of Helicobacter pylori

Yalda Khosravi; Vellaya Rehvathy; Wei Yee Wee; Susana Wang; Primo Baybayan; Siddarth Singh; Meredith Ashby; Junxian Ong; Arlaine Anne Amoyo; Shih Wee Seow; Siew Woh Choo; Tim Perkins; Eng Guan Chua; Alfred Tay; Barry J. Marshall; Mun Fai Loke; Khean-Lee Goh; Sven Pettersson; Jamuna Vadivelu

Correction: Comparing the genomes of Helicobacter pylori clinical strain UM032 and mice-adapted derivatives Yalda Khosravi, Vellaya Rehvathy, Wei Yee Wee, Susana Wang, Primo Baybayan, Siddarth Singh, Meredith Ashby, Junxian Ong, Arlaine Anne Amoyo, Shih Wee Seow, Siew Woh Choo, Tim Perkins, Eng Guan Chua, Alfred Tay, Barry James Marshall, Mun Fai Loke, Khean Lee Goh, Sven Pettersson and Jamuna Vadivelu


Gut microbes | 2016

Helicobacter pylori and gut microbiota modulate energy homeostasis prior to inducing histopathological changes in mice

Yalda Khosravi; Ralph M. Bunte; Kher Hsin Chiow; Tuan Lin Tan; Whye Yen Wong; Qian Hui Poh; Ignatius Mario Doli Sentosa; Shih Wee Seow; Arlaine Anne Amoyo; Sven Pettersson; Mun Fai Loke; Jamuna Vadivelu

Abstract Helicobacter pylori have been shown to influence physiological regulation of metabolic hormones involved in food intake, energy expenditure and body mass. It has been proposed that inducing H. pylori-induced gastric atrophy damages hormone-producing endocrine cells localized in gastric mucosal layers and therefore alter their concentrations. In a recent study, we provided additional proof in mice under controlled conditions that H. pylori and gut microbiota indeed affects circulating metabolic gut hormones and energy homeostasis. In this addendum, we presented data from follow-up investigations that demonstrated H. pylori and gut microbiota-associated modulation of metabolic gut hormones was independent and precedes H. pylori-induced histopathological changes in the gut of H. pylori-infected mice. Thus, H. pylori-associated argumentation of energy homeostasis is not caused by injury to endocrine cells in gastric mucosa.


Frontiers in Microbiology | 2016

Proteomics Analysis Revealed that Crosstalk between Helicobacter pylori and Streptococcus mitis May Enhance Bacterial Survival and Reduces Carcinogenesis

Yalda Khosravi; Mun Fai Loke; Khean-Lee Goh; Jamuna Vadivelu

Helicobacter pylori is the dominant species of the human gastric microbiota and is present in the stomach of more than half of the human population worldwide. Colonization by H. pylori causes persistent inflammatory response and H. pylori-induced gastritis is the strongest singular risk factor for the development of gastric adenocarcinoma. However, only a small proportion of infected individuals develop malignancy. Besides H. pylori, other microbial species have also been shown to be related to gastritis. We previously reported that interspecies microbial interaction between H. pylori and S. mitis resulted in alteration of their metabolite profiles. In this study, we followed up by analyzing the changing protein profiles of H. pylori and S. mitis by LC/Q-TOF mass spectrometry to understand the different response of the two bacterial species in a multi-species micro-environment. Differentially-expressed proteins in mono- and co-cultures could be mapped into 18 biological pathways. The number of proteins involve in RNA degradation, nucleotide excision repair, mismatch repair, and lipopolysaccharide (LPS) biosynthesis were increased in co-cultured H. pylori. On the other hand, fewer proteins involve in citrate cycle, glycolysis/ gluconeogenesis, aminoacyl-tRNA biosynthesis, translation, metabolism, and cell signaling were detected in co-cultured H. pylori. This is consistent with our previous observation that in the presence of S. mitis, H. pylori was transformed to coccoid. Interestingly, phosphoglycerate kinase (PGK), a major enzyme used in glycolysis, was found in abundance in co-cultured S. mitis and this may have enhanced the survival of S. mitis in the multi-species microenvironment. On the other hand, thioredoxin (TrxA) and other redox-regulating enzymes of H. pylori were less abundant in co-culture possibly suggesting reduced oxidative stress. Oxidative stress plays an important role in tissue damage and carcinogenesis. Using the in vitro co-culture model, this study emphasized the possibility that pathogen-microbiota interaction may have a protective effect against H. pylori-associated carcinogenesis.

Collaboration


Dive into the Yalda Khosravi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eng Guan Chua

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Pettersson

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge