Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yali Zhai is active.

Publication


Featured researches published by Yali Zhai.


Current Biology | 2007

p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes

Guido T. Bommer; Isabelle Gerin; Ying Feng; Andrew Kaczorowski; Rork Kuick; Robert E. Love; Yali Zhai; Thomas J. Giordano; Zhaohui S. Qin; Bethany B. Moore; Ormond A. MacDougald; Kathleen R. Cho; Eric R. Fearon

BACKGROUND In response to varied cell stress signals, the p53 tumor-suppressor protein activates a multitude of genes encoding proteins with functions in cell-cycle control, DNA repair, senescence, and apoptosis. The role of p53 in transcription of other types of RNAs, such as microRNAs (miRNAs) is essentially unknown. RESULTS Using gene-expression analyses, reporter gene assays, and chromatin-immunoprecipitation approaches, we present definitive evidence that the abundance of the three-member miRNA34 family is directly regulated by p53 in cell lines and tissues. Using array-based approaches and algorithm predictions, we define genes likely to be directly regulated by miRNA34, with cell-cycle regulatory genes being the most prominent class. In addition, we provide functional evidence, obtained via antisense oligonucleotide transfection and the use of mouse embryonic stem cells with loss of miRNA34a function, that the BCL2 protein is regulated directly by miRNA34. Finally, we demonstrate that the expression of two miRNA34s is dramatically reduced in 6 of 14 (43%) non-small cell lung cancers (NSCLCs) and that the restoration of miRNA34 expression inhibits growth of NSCLC cells. CONCLUSIONS Taken together, the data suggest the miRNA34s might be key effectors of p53 tumor-suppressor function, and their inactivation might contribute to certain cancers.


Cancer Cell | 2002

ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with β-catenin defects and promotes neoplastic transformation

Frank T. Kolligs; Marvin T. Nieman; Ira Winer; Gang Hu; David Van Mater; Ying Feng; Ian M. Smith; Rong Wu; Yali Zhai; Kathleen R. Cho; Eric R. Fearon

In many cancers, inactivation of the adenomatous polyposis coli (APC) or Axin tumor suppressor proteins or activating mutations in beta-catenin lead to elevated beta-catenin levels, enhanced binding of beta-catenin to T cell factor (TCF) proteins, and increased expression of TCF-regulated genes. We found that the gene for the basic helix-loop-helix transcription factor ITF-2 (immunoglobulin transcription factor-2) was activated in rat E1A-immortalized RK3E cells following neoplastic transformation by beta-catenin or ligand-induced activation of a beta-catenin-estrogen receptor fusion protein. Human cancers with beta-catenin regulatory defects had elevated ITF-2 expression, and ITF-2 was repressed by restoring wild-type APC function or inhibiting TCF activity. Of note, ITF-2 promoted neoplastic transformation of RK3E cells. We propose that ITF-2 is a TCF-regulated gene, which functions in concert with other TCF target genes to promote growth and/or survival of cancer cells with defects in beta-catenin regulation.


Cancer Research | 2005

Expression of Membrane Type 1 Matrix Metalloproteinase Is Associated with Cervical Carcinoma Progression and Invasion

Yali Zhai; Kevin B. Hotary; Bin Nan; F. Xavier Bosch; Nubia Muñoz; Stephen J. Weiss; Kathleen R. Cho

Membrane type 1 matrix metalloproteinase (MT1-MMP) is frequently expressed by cancer cells and is believed to play an important role in cancer cell invasion and metastasis. However, little is known about the role of MT1-MMP in mediating invasiveness of cervical cancer cells. In this study, we examined MT1-MMP expression in 58 primary human cervical tissue specimens, including normal cervix, low-grade squamous intraepithelial lesions (LSIL), high-grade SILs (HSIL), and invasive carcinomas. We also evaluated MT1-MMP, MMP-2, and tissue inhibitor of metalloproteinase-2 expression in several cervical cancer-derived cell lines, human papillomavirus (HPV)-immortalized keratinocytes, and keratinocytes derived from a LSIL. Using in situ hybridization techniques to study the cervical tissue specimens, we found that MT1-MMP expression increases with cervical tumor progression (Spearman correlation coefficient = 0.66; P < 0.0001, exact test). Specifically, MT1-MMP expression is very low or absent in normal cervix and LSILs, is readily detectable in HSILs, and is very strongly expressed in nearly all invasive carcinomas. Most but not all cervical cancer-derived cell lines also expressed significant levels of MT1-MMP and MMP-2. Constitutive expression of exogenous MT1-MMP in cervical carcinoma-derived cells and HPV-immortalized keratinocytes with low endogenous levels of MT1-MMP induced invasiveness in collagen I, but this effect was not observed in LSIL-derived keratinocytes. Our results show that MT1-MMP is a key enzyme mediating cervical cancer progression. However, MT1-MMP alone is not always sufficient for inducing keratinocyte invasiveness at least in the collagen I invasion assay used in this study. Further studies of gene expression in preinvasive and invasive cervical cancers should assist with identification of additional critical factors mediating cervical cancer progression.


Cancer Research | 2007

Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion

Yali Zhai; Rork Kuick; Bin Nan; Ichiro Ota; Stephen J. Weiss; Cornelia L. Trimble; Eric R. Fearon; Kathleen R. Cho

If left untreated, a subset of high-grade squamous intraepithelial lesions (HSIL) of the cervix will progress to invasive squamous cell carcinomas (SCC). To identify genes whose differential expression is linked to cervical cancer progression, we compared gene expression in microdissected squamous epithelial samples from 10 normal cervices, 7 HSILs, and 21 SCCs using high-density oligonucleotide microarrays. We identified 171 distinct genes at least 1.5-fold up-regulated (and P < 0.001) in the SCCs relative to HSILs and normal cervix samples. Differential expression of a subset of these genes was confirmed by quantitative reverse transcription-PCR and immunohistochemical staining of cervical tissue samples. One of the genes up-regulated during progression, HOXC10, was selected for functional studies aimed at assessing its role in mediating invasive behavior of neoplastic squamous epithelial cells. Elevated HOXC10 expression was associated with increased invasiveness of human papillomavirus-immortalized keratinocytes and cervical cancer-derived cell lines in both in vitro and in vivo assays. Cervical cancer cells with high endogenous levels of HOXC10 were less invasive after short hairpin RNA-mediated knockdown of HOXC10 expression. Our findings support a key role for the HOXC10 homeobox protein in cervical cancer progression. Other genes with differential expression in invasive SCC versus HSIL may contribute to tumor progression or may be useful as markers for cancer diagnosis or progression risk.


American Journal of Pathology | 2002

Role of β-Catenin/T-Cell Factor-Regulated Genes in Ovarian Endometrioid Adenocarcinomas

Yali Zhai; Rong Wu; Donald R. Schwartz; Danielle M. Darrah; Heather Reed; Frank T. Kolligs; Marvin T. Nieman; Eric R. Fearon; Kathleen R. Cho

In various cancers, inactivating mutations in the adenomatous polyposis coli or Axin tumor suppressor proteins or activating mutations in beta-catenins amino-terminal domain elevate beta-catenin levels, resulting in marked effects on T-cell factor (TCF)-regulated transcription. Several candidate beta-catenin/TCF-regulated genes in cancer have been proposed. Expression of a few of these genes has been studied in primary human cancers, but most studies have focused on colon cancers and not on other cancer types that harbor mutational defects in adenomatous polyposis coli, AXIN, or beta-catenin. Mutations leading to beta-catenin deregulation are found in nearly half of ovarian endometrioid adenocarcinomas (OEAs). We report here on the expression of 6 candidate beta-catenin/TCF-regulated genes in a panel of 44 primary OEAs, more than a third of which carry demonstrable defects in beta-catenin regulation. Using quantitative assays of gene expression, we found significantly elevated expression of the MMP-7, CCND1 (Cyclin D1), CX43 (Connexin 43), PPAR-delta, and ITF2 genes in OEAs with deregulated beta-catenin. This correlation was not observed for c-myc, another putative beta-catenin/TCF-regulated gene. Immunohistochemical studies confirmed that overexpression of cyclin D1 and MMP-7 was highly associated with nuclear accumulation of beta-catenin and mutational defects of the Wnt/beta-catenin/TCF-signaling pathway. Our findings indicate cyclin D1, MMP-7, connexin 43, PPAR-delta, and ITF-2, likely play important roles in the pathogenesis of those OEAs that manifest defects in beta-catenin regulation.


Journal of Clinical Investigation | 2010

COMMD1 disrupts HIF-1α/β dimerization and inhibits human tumor cell invasion

Bart van der Sluis; Xicheng Mao; Yali Zhai; Arjan J. Groot; Jeroen Vermeulen; Elsken van der Wall; Paul J. van Diest; Marten H. Hofker; Cisca Wijmenga; Leo W. J. Klomp; Kathleen R. Cho; Eric R. Fearon; Marc Vooijs; Ezra Burstein

The gene encoding COMM domain-containing 1 (COMMD1) is a prototypical member of the COMMD gene family that has been shown to inhibit both NF-kappaB- and HIF-mediated gene expression. NF-kappaB and HIF are transcription factors that have been shown to play a role in promoting tumor growth, survival, and invasion. In this study, we demonstrate that COMMD1 expression is frequently suppressed in human cancer and that decreased COMMD1 expression correlates with a more invasive tumor phenotype. We found that direct repression of COMMD1 in human cell lines led to increased tumor invasion in a chick xenograft model, while increased COMMD1 expression in mouse melanoma cells led to decreased lung metastasis in a mouse model. Decreased COMMD1 expression also correlated with increased expression of genes known to promote cancer cell invasiveness, including direct targets of HIF. Mechanistically, our studies show that COMMD1 inhibits HIF-mediated gene expression by binding directly to the amino terminus of HIF-1alpha, preventing its dimerization with HIF-1beta and subsequent DNA binding and transcriptional activation. Altogether, our findings demonstrate a role for COMMD1 in tumor invasion and provide a detailed mechanism of how this factor regulates the HIF pathway in cancer cells.


Gastroenterology | 2011

Mutant Kras Promotes Hyperplasia and Alters Differentiation in the Colon Epithelium but Does Not Expand the Presumptive Stem Cell Pool

Ying Feng; Guido T. Bommer; Jenny Zhao; Maranne Green; Evan Sands; Yali Zhai; Kelly Brown; Aaron Burberry; Kathleen R. Cho; Eric R. Fearon

BACKGROUND & AIMS Adenomatous polyps are precursors to colorectal cancer (CRC), whereas hyperplastic polyps (HPPs) have low risk of progression to CRC. Mutations in KRAS are found in ∼40% of CRCs and large adenomas and a subset of HPPs. We investigated the reasons why HPPs with KRAS mutations lack malignant potential and compared the effects of Kras/KRAS activation with those of Apc/APC inactivation, which promotes adenoma formation. METHODS We activated a KrasG12D mutant allele or inactivated Apc alleles in mouse colon epithelium and analyzed phenotypes and expression of selected genes and proteins. The mouse data were validated using samples of human HPPs and adenomas. Signaling pathways and factors contributing to Kras/KRAS-induced phenotypes were studied in intestinal epithelial cells. RESULTS Activation of Kras led to hyperplasia and serrated crypt architecture akin to that observed in human HPPs. We also observed loss of Paneth cells and increases in goblet cell numbers. Abnormalities in Kras-mediated differentiation and proliferation required mitogen-activated protein kinase signaling and were linked to activation of the Hes1 transcription factor. Human HPPs also had activation of HES1. In contrast to Apc/APC inactivation, Kras/KRAS activation did not increase expression of crypt stem cell markers in colon epithelium or colony formation in vitro. Kras/KRAS activation was not associated with substantial induction of p16(INK4a) protein expression in mouse colon epithelium or human HPPs. CONCLUSIONS Although Kras/KRAS mutation promotes serrated and hyperplastic morphologic features in colon epithelium, it is not able to initiate adenoma development, perhaps in part because activated Kras/KRAS signaling does not increase the number of presumptive stem cells in affected crypts.


Cancer Research | 2015

Genomic Profiling of Penile Squamous Cell Carcinoma Reveals New Opportunities for Targeted Therapy

Andrew S. McDaniel; Daniel H. Hovelson; Andi K. Cani; Chia Jen Liu; Yali Zhai; Yajia Zhang; Alon Z. Weizer; Rohit Mehra; Felix Y. Feng; Ajjai Alva; Todd M. Morgan; Jeffrey S. Montgomery; Javed Siddiqui; Seth Sadis; Santhoshi Bandla; Paul D. Williams; Kathleen R. Cho; Daniel R. Rhodes; Scott A. Tomlins

Penile squamous cell carcinoma (PeSCCA) is a rare malignancy for which there are limited treatment options due to a poor understanding of the molecular alterations underlying disease development and progression. Therefore, we performed comprehensive, targeted next-generation sequencing to identify relevant somatic genomic alterations in a retrospective cohort of 60 fixed tumor samples from 43 PeSCCA cases (including 14 matched primary/metastasis pairs). We identified a median of two relevant somatic mutations and one high-level copy-number alteration per sample (range, 0-5 and 0-6, respectively). Expression of HPV and p16 was detectable in 12% and 28% of patients, respectively. Furthermore, advanced clinical stage, lack of p16 expression, and MYC and CCND1 amplifications were significantly associated with shorter time to progression or PeSCCA-specific survival. Notably, four cases harbored EGFR amplifications and one demonstrated CDK4 amplification, genes for which approved and investigational targeted therapies are available. Importantly, although paired primary tumors and lymph node metastases were largely homogeneous for relevant somatic mutations, we identified heterogeneous EGFR amplification in primary tumor/lymph node metastases in 4 of 14 cases, despite uniform EGFR protein overexpression. Likewise, activating HRAS mutations occurred in 8 of 43 cases. Taken together, we provide the first comprehensive molecular PeSCCA analysis, which offers new insight into potential precision medicine approaches for this disease, including strategies targeting EGFR.


Cancer Research | 2007

Drosophila split ends homologue SHARP functions as a positive regulator of Wnt/beta-catenin/T-cell factor signaling in neoplastic transformation.

Ying Feng; Guido T. Bommer; Yali Zhai; Aytekin Akyol; Takao Hinoi; Ira Winer; Hua V. Lin; Ken M. Cadigan; Kathleen R. Cho; Eric R. Fearon

Wnt ligands have pleiotropic and context-specific roles in embryogenesis and adult tissues. Among other effects, certain Wnts stabilize the beta-catenin protein, leading to the ability of beta-catenin to activate T-cell factor (TCF)-mediated transcription. Mutations resulting in constitutive beta-catenin stabilization underlie development of several human cancers. Genetic studies in Drosophila highlighted the split ends (spen) gene as a positive regulator of Wnt-dependent signaling. We have assessed the role of SHARP, a human homologue of spen, in Wnt/beta-catenin/TCF function in mammalian cells. We found that SHARP gene and protein expression is elevated in human colon and ovarian endometrioid adenocarcinomas and mouse colon adenomas and carcinomas carrying gene defects leading to beta-catenin dysregulation. When ectopically expressed, the silencing mediator for retinoid and thyroid receptors/histone deacetylase 1-associated repressor protein (SHARP) protein potently enhanced beta-catenin/TCF transcription of a model reporter gene and cellular target genes. Inhibition of endogenous SHARP function via RNA inhibitory (RNAi) approaches antagonized beta-catenin/TCF-mediated activation of target genes. The effect of SHARP on beta-catenin/TCF-regulated genes was mediated via a functional interaction between SHARP and TCF. beta-Catenin-dependent neoplastic transformation of RK3E cells was enhanced by ectopic expression of SHARP, and RNAi-mediated inhibition of endogenous SHARP in colon cancer cells inhibited their transformed growth. In toto, our findings implicate SHARP as an important positive regulator of Wnt signaling in cancers with beta-catenin dysregulation.


American Journal of Pathology | 2010

Loss of estrogen receptor 1 enhances cervical cancer invasion.

Yali Zhai; Guido T. Bommer; Ying Feng; Alexandra B. Wiese; Eric R. Fearon; Kathleen R. Cho

If left untreated, some cervical high-grade squamous intraepithelial lesions will progress to invasive squamous cell carcinoma (SCC), but the molecular events conferring invasive potential remain poorly defined. In prior work, we identified 48 genes that were down-regulated in SCCs compared with high-grade squamous intraepithelial lesions and normal squamous epithelia. In this study, a functional screening strategy was used to identify which of these genes regulate cervical cancer cell invasion. Two independent squamous epithelial cell lines were transduced with a library of short hairpin RNAs targeting the differentially expressed genes and tested for invasion of the chick chorioallantoic membrane. PCR was used to recover specific short hairpin RNAs from cells that invaded the chorioallantoic membrane. Constructs targeting estrogen receptor 1 (ESR1) were highly enriched in the invasive cells. The short hairpin RNA-mediated inhibition of ESR1 in SCC- and precancer-derived cell lines increased invasiveness in both in vivo and in vitro assays. Conversely, restoration of ESR1 expression in ESR1-negative cervical cancer cells reduced cell invasiveness. Loss of ESR1 expression was found to accompany cervical cancer progression in an analysis of primary normal cervix, low grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions, and SCC specimens. Molecular mechanisms underlying down-regulation of ESR1 in invasive cervical carcinomas appear to be complex and likely heterogeneous. Our findings indicate that loss of ESR1 has a major role in mediating cervical cancer invasion and progression.

Collaboration


Dive into the Yali Zhai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Wu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Rork Kuick

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Ying Feng

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Samir M. Hanash

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido T. Bommer

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge