Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yalin Wu is active.

Publication


Featured researches published by Yalin Wu.


Journal of Lipid Research | 2010

Phospholipid meets all-trans-retinal: the making of RPE bisretinoids

Janet R. Sparrow; Yalin Wu; Chul Kim; Jilin Zhou

The lipid phase of the photoreceptor outer segment membrane is essential to the photon capturing and signaling functions of rhodopsin. Rearrangement of phospholipids in the bilayer accompanies the formation of the active intermediates of rhodopsin following photon absorption. Furthermore, evidence for the formation of a condensation product between the photolyzed chromophore all-trans-retinal and phosphatidylethanolamine indicates that phospholipid may also participate in the movement of the retinoid in the membrane. The downside of these interactions is the formation of bisretinoid-phosphatidylethanolamine compounds that accumulate in retinal pigment epithelial cells with age and that are particularly abundant in some retinal disorders. The propensity of these compounds to negatively impact on the cells has been linked to the pathogenesis of some retinal disorders including juvenile onset recessive Stargardt disease and age-related macular degeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration

Yalin Wu; Emiko Yanase; Xidong Feng; Marshall M. Siegel; Janet R. Sparrow

Fluorescent bisretinoids, such as A2E and all-trans-retinal dimer, form as a by-product of vitamin A cycling in retina and accumulate in retinal pigment epithelial (RPE) cells as lipofuscin pigments. These pigments are implicated in pathological mechanisms involved in several vision-threatening diseases including age-related macular degeneration. Efforts to understand damaging events initiated by these bisretinoids have revealed that photoexcitation of A2E by wavelengths in the visible spectrum leads to singlet oxygen production and photooxidation of A2E. Here we have employed liquid chromatography coupled to electrospray ionization mass spectrometry together with tandem mass spectrometry (MS/MS), to demonstrate that A2E also undergoes photooxidation-induced degradation and we have elucidated the structures of some of the aldehyde-bearing cleavage products. Studies in which A2E was incubated with a singlet oxygen generator yielded results consistent with a mechanism involving bisretinoid photocleavage at sites of singlet molecular oxygen addition. We provide evidence that one of the products released by A2E photodegradation is methylglyoxal, a low molecular weight reactive dicarbonyl with the capacity to form advanced glycation end products. Methylglyoxal is already known to be generated by carbohydrate and lipid oxidation; this is the first report of its production via bisretinoid photocleavage. It is significant that AGE-modified proteins are detected in deposits (drusen) that accumulate below RPE cells in vivo; drusen have been linked to age-related macular degeneration pathogenesis. Whereas various processes play a role in drusen formation, these findings are indicative of a contribution from lipofuscin photooxidation in RPE.


Investigative Ophthalmology & Visual Science | 2010

Interpretations of Fundus Autofluorescence from Studies of the Bisretinoids of the Retina

Janet R. Sparrow; Kee Dong Yoon; Yalin Wu; Kazunori Yamamoto

Elevated fundus autofluorescence signals can reflect enhanced lipofuscin in RPE cells, augmented fluorescence due to photooxidation, and/or excess bisretinoid fluorophores in photoreceptor cells due to mishandling of vitamin A aldehyde by dysfunctional cells.


Journal of Biological Chemistry | 2009

Novel Lipofuscin Bisretinoids Prominent in Human Retina and in a Model of Recessive Stargardt Disease

Yalin Wu; Nathan Fishkin; Ajay Pande; Jayanti Pande; Janet R. Sparrow

Bisretinoid adducts accumulate as lipofuscin in retinal pigment epithelial (RPE) cells of the eye and are implicated in the pathology of inherited and age-related macular degeneration. Characterization of the bisretinoids A2E and the all-trans-retinal dimer series has shown that these pigments form from reactions in photoreceptor cell outer segments that involve all-trans-retinal, the product of photoisomerization of the visual chromophore 11-cis-retinal. Here we have identified two related but previously unknown RPE lipofuscin compounds. By high performance liquid chromatography-elec tro spray ionization-tandem mass spectrometry, we determined that the first of these compounds is a phosphatidyl-dihydropyridine bisretinoid; to indicate this structure and its formation from two vitamin A-aldehyde (A2), we will refer to it as A2-dihydropyridine-phosphatidyleth a nol amine (A2-DHP-PE). The second pigment, A2-dihydropyridine-eth a nol amine, forms from phosphate hydrolysis of A2-DHP-PE. The structure of A2-DHP-PE was corroborated by Fourier transform infrared spectroscopy, and density functional theory confirmed the presence of a dihydropyridine ring. This lipofuscin pigment is a fluorescent compound with absorbance maxima at ∼490 and 330 nm, and it was identified in human, mouse, and bovine eyes. We found that A2-DHP-PE forms in reaction mixtures of all-trans-retinal and phosphatidyleth a nol amine, and in mouse eyecups we observed an age-related accumulation. As compared with wild-type mice, A2-DHP-PE is more abundant in mice with a null mutation in Abca4 (ATP-binding cassette transporter 4), the gene causative for recessive Stargardt macular degeneration. Efforts to clarify the composition of RPE lipofuscin are important because these compounds are targets of gene-based and drug therapies that aim to alleviate ABCA4-related retinal disease.


Photochemical and Photobiological Sciences | 2010

Fundus autofluorescence and the bisretinoids of retina

Janet R. Sparrow; Yalin Wu; Takayuki Nagasaki; Kee Dong Yoon; Kazunori Yamamoto; Jilin Zhou

Imaging of the human fundus of the eye with excitation wavelengths in the visible spectrum reveals a natural autofluorescence, that in a healthy retina originates primarily from the bisretinoids that constitute the lipofuscin of retinal pigment epithelial (RPE) cells. Since the intensity and distribution of fundus autofluorescence is altered in the presence of retinal disease, we have examined the fluorescence properties of the retinal bisretinoids with a view to aiding clinical interpretations. As is also observed for fundus autofluorescence, fluorescence emission from RPE lipofuscin was generated with a wide range of exciting wavelengths; with increasing excitation wavelength, the emission maximum shifted towards longer wavelengths and spectral width was decreased. These features are consistent with fluorescence generation from a mixture of compounds. While the bisretinoids that constitute RPE lipofuscin all fluoresced with maxima that were centered around 600 nm, fluorescence intensities varied when excited at 488 nm, the excitation wavelength utilized for fundus autofuorescence imaging. For instance the fluorescence efficiency of the bisretinoid A2-dihydropyridine-phosphatidylethanolamine (A2-DHP-PE) was greater than A2E and relative to both of the latter, all-trans-retinal dimer-phosphatidylethanolamine was weakly fluorescent. On the other hand, certain photooxidized forms of the bisretinoids present in both RPE and photoreceptor cells were more strongly fluorescent than the parent compound. We also sought to evaluate whether diffuse puncta of autofluorescence observed in some retinal disorders of monogenic origin are attributable to retinoid accumulation. However, two retinoids of the visual cycle, all-trans-retinyl ester and all-trans-retinal, did not exhibit fluorescence at 488 nm excitation.


Journal of the American Chemical Society | 2011

Enzymatic Degradation of A2E, a Retinal Pigment Epithelial Lipofuscin Bisretinoid

Yalin Wu; Jilin Zhou; Nathan Fishkin; Bruce E. Rittmann; Janet R. Sparrow

Some forms of blinding macular disease are associated with excessive accumulation of bisretinoid lipofuscin in retinal pigment epithelial (RPE) cells of the eye. This material is refractory to lysosomal enzyme degradation. In addition to gene and drug-based therapies, treatments that reverse the accumulation of bisretinoid would be beneficial. Thus, we have examined the feasibility of degrading the bisretinoids by delivery of exogenous enzyme. As proof of principle we report that horseradish peroxidase (HRP) can cleave the RPE bisretinoid A2E. In both cell-free and cell-based assays, A2E levels were decreased in the presence of HRP. HRP-associated cleavage products were detected by ultraperformance liquid chromatography (UPLC) coupled to electrospray ionization mass spectrometry, and the structures of the aldehyde-bearing cleavage products were elucidated by 18O-labeling and 1H NMR spectroscopy and by recording UV−vis absorbance spectra. These findings indicate that RPE bisretinoids such as A2E can be degraded by appropriate enzyme activities.


Journal of Biological Chemistry | 2009

Melanoregulin (MREG) modulates lysosome function in pigment epithelial cells.

Monika Damek-Poprawa; Tanja Diemer; Vanda S. Lopes; Concepción Lillo; Dawn C. Harper; Michael S. Marks; Yalin Wu; Janet R. Sparrow; Rivka A. Rachel; David S. Williams; Kathleen Boesze-Battaglia

Melanoregulin (MREG), the product of the Mregdsu gene, is a small highly charged protein, hypothesized to play a role in organelle biogenesis due to its effect on pigmentation in dilute, ashen, and leaden mutant mice. Here we provide evidence that MREG is required in lysosome-dependent phagosome degradation. In the Mreg-/- mouse, we show that loss of MREG function results in phagosome accumulation due to delayed degradation of engulfed material. Over time, the Mreg-/- mouse retinal pigment epithelial cells accumulate the lipofuscin component, A2E. MREG-deficient human and mouse retinal pigment epithelial cells exhibit diminished activity of the lysosomal hydrolase, cathepsin D, due to defective processing. Moreover, MREG localizes to small intracellular vesicles and associates with the endosomal phosphoinositide, phosphatidylinositol 3,5-biphosphate. Collectively, these studies suggest that MREG is required for lysosome maturation and support a role for MREG in intracellular trafficking.


Cell Death and Disease | 2015

Protective effect of autophagy on human retinal pigment epithelial cells against lipofuscin fluorophore A2E: implications for age-related macular degeneration

Jinxing Zhang; Y Bai; L Huang; Y Qi; Qinghua Zhang; Shaozi Li; Yalin Wu; Xiaokun Li

Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly. Degeneration of retinal pigment epithelial (RPE) cells is a crucial causative factor responsible for the onset and progression of AMD. A2E, a major component of toxic lipofuscin implicated in AMD, is deposited in RPE cells with age. However, the mechanism whereby A2E may contribute to the pathogenesis of AMD remains unclear. We demonstrated that A2E was a danger signal of RPE cells, which induced autophagy and decreased cell viability in a concentration- and time-dependent manner. Within 15 min after the treatment of RPE with 25 μM A2E, the induction of autophagosome was detected by transmission electron microscopy. After continuous incubating RPE cells with A2E, intense punctate staining of LC3 and increased expression of LC3-II and Beclin-1 were identified. Meanwhile, the levels of intercellular adhesion molecule (ICAM), interleukin (IL)1β, IL2, IL-6, IL-8, IL-17A, IL-22, macrophage cationic peptide (MCP)-1, stromal cell-derived factor (SDF)-1, and vascular endothelial growth factor A (VEGFA) were elevated. The autophagic inhibitor 3-methyladenine (3-MA) and activator rapamycin were also used to verify the effect of autophagy on RPE cells against A2E. Our results revealed that 3-MA decreased the autophagosomes and LC3 puncta induced by A2E, increased inflammation-associated protein expression including ICAM, IL1β, IL2, IL-6, IL-8, IL-17A, IL-22, and SDF-1, and upregulated VEGFA expression. Whereas rapamycin augmented the A2E-mediated autophagy, attenuated protein expression of inflammation-associated and angiogenic factors, and blocked the Akt/mTOR pathway. Taken together, A2E induces autophagy in RPE cells at the early stage of incubation, and this autophagic response can be inhibited by 3-MA or augmented by rapamycin via the mTOR pathway. The enhancement of autophagy has a protective role in RPE cells against the adverse effects of A2E by reducing the secretion of inflammatory cytokines and VEGFA.


Methods of Molecular Biology | 2010

Experimental approaches to the study of A2E, a bisretinoid lipofuscin chromophore of retinal pigment epithelium.

Janet R. Sparrow; So Ra Kim; Yalin Wu

Bisretinoid lipofuscin compounds that accumulate in retinal pigment epithelial (RPE) cells are implicated in the pathogenesis of some forms of macular degeneration. In the development of approaches to the amelioration of retinal disorders characterized by enhanced RPE lipofuscin formation, attention is being given to therapies that reduce the production of these damaging pigments. An understanding of the biosynthetic pathways by which these molecules form is essential to the development of these therapies. Thus methods for studying the biosynthesis of these compounds are presented. A tissue culture model is also described whereby a human RPE cell line that is otherwise devoid of bisretinoid lipofuscin compounds is employed and synthesized A2E is delivered to the cells. This approach allows for a population of RPE cells that have accumulated the lipofuscin fluorophore A2E in addition to A2E-free cells.


Acta Ophthalmologica | 2013

Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells.

Barbro Westlund van der Burght; Morten Hartvig Hansen; Jørgen Olsen; Jilin Zhou; Yalin Wu; Mogens H. Nissen; Janet R. Sparrow

Purpose:  Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age‐related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm).

Collaboration


Dive into the Yalin Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingmeng Chen

Zhejiang University City College

View shared research outputs
Top Co-Authors

Avatar

Jie Li

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar

Ke Yao

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge