Yaling Cao
Southwest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaling Cao.
Biosensors and Bioelectronics | 2012
Yaling Cao; Ruo Yuan; Yaqin Chai; Li Mao; Huan Niu; Huijing Liu; Ying Zhuo
In this study, an ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed using carboxyl group functionalized multi-walled carbon nanotubes (MWCNTs) as platform and glucose oxidase (GOD) supported on Au nanoparticles (AuNPs) decorated MWCNTs (AuNPs@MWCNTs-GOD) as labels. Firstly, using poly(ethylenimine) (PEI) as linkage reagents, AuNPs@MWCNTs were prepared and introduced for binding of the secondary antibody (Ab(2)) and glucose oxidase (GOD) with high loading amount and good biological activity due to the improved surface area of AuNPs@MWCNTs and excellent biocompatibility of AuNPs. Then the GOD and Ab(2) labeled AuNPs@MWCNTs were linked to the electrode surface via sandwich immunoreactions. These localized GOD and AuNPs amplified luminol ECL signals dramatically, which was achieved by efficient catalysis of the GOD and AuNPs towards the oxidation of glucose to in situ generate improved amount of hydrogen peroxide (H(2)O(2)) as coreactant and the enhancement of AuNPs to the ECL reaction of luminol-H(2)O(2). The experimental results demonstrated that the proposed immunosensor exhibited sensitive and stable response for the detection of α-1-fetoprotein (AFP), ranging from 0.0001 to 80 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (S/N=3). With excellent stability, sensitivity, selectivity and simplicity, the proposed luminol ECL immunosensor showed great potential in clinical applications.
Analytica Chimica Acta | 2012
Yinfeng Cheng; Ruo Yuan; Yaqin Chai; Huan Niu; Yaling Cao; Huijing Liu; Lijuan Bai; Yali Yuan
In this work, we reported a sandwiched luminol electrochemiluminescence (ECL) immunosensor using ZnO nanoparticles (ZnONPs) and glucose oxidase (GOD) decorated graphene as labels and in situ generated hydrogen peroxide as coreactant. In order to construct the base of the immunosensor, a hybrid architecture of Au nanoparticles and graphene by reduction of HAuCl(4) and graphene oxide (GO) with ascorbic acid was prepared. The resulted hybrid architecture modified electrode provided an excellent platform for immobilization of antibody with good bioactivity and stability. Then, ZnONPs and GOD functionalized graphene labeled secondary antibody was designed for fabricating a novel sandwiched ECL immunosensor. Enhanced sensitivity was obtained by in situ generating hydrogen peroxide with glucose oxidase and the catalysis of ZnONPs to the ECL reaction of luminol-H(2)O(2) system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of carcinoembryonic antigen (CEA) in the range from 10 pg mL(-1) to 80 ng mL(-1) and with a detection limit of 3.3 pg mL(-1) (SN(-1)=3). The amplification strategy performed good promise for clinical application of screening of cancer biomarkers.
Biosensors and Bioelectronics | 2012
Haijun Wang; Ruo Yuan; Yaqin Chai; Huan Niu; Yaling Cao; Huijing Liu
A novel electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of α-1-fetoprotein (AFP) was designed based on the in situ bi-enzymatic reaction to generate coreactant of peroxydisulfate for signal amplification. In this work, AuNPs were electrodeposited on the glassy carbon electrode (GCE) surface, which promoted the electron transfer. Then, L-cysteine and another layer of AuNPs were, respectively assembled onto the modified electrode surface, which formed the multilayer films for amplifying the ECL signal of peroxydisulfate and immobilizing antibody. At last, glucose oxidase (GOD) and horseradish peroxidase (HRP) were employed to block the nonspecific binding sites. When proper amounts of glucose were added in the detection solution, GOD catalyzed the oxidation of glucose to generate H(2)O(2), which could be further catalyzed by HRP to generate O(2) for the signal amplification. The linear range for AFP detection was 0.001-100 ng mL(-1), with a low detection limit of 3.3 × 10(-4) ng mL(-1). The novel strategy has the advantages of simplicity, sensitivity, good selectivity and reproducibility which might hold a new promise for highly sensitive bioassays applied in clinical detection.
Analytica Chimica Acta | 2013
Xinya Jiang; Yaqin Chai; Ruo Yuan; Yaling Cao; Yingfeng Chen; Haijun Wang; Xianxue Gan
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene-carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (-0.1 to 0.4V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL(-1) to 40 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (SN(-1)=3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.
Biosensors and Bioelectronics | 2013
Huan Niu; Ruo Yuan; Yaqin Chai; Li Mao; Huijing Liu; Yaling Cao
An immunosensor based on the electrochemiluminescence (ECL) of peroxydisulfate was firstly proposed by coupling the cooperation of two enzymes to in situ generate coreactant with palladium nanoparticles (PdNPs) as catalyst for the ECL reaction. PdNPs were previously synthesized, which successfully attached to functional carbon nanotubes (FCNTs), to bind the secondary antibody and bienzyme (horseradish peroxidase and glucose oxidase). Then the prepared bioconjugates were introduced to the electrode via sandwich immunoreactions. Accordingly, a dramatically amplified ECL signal was obtained for that GOD catalyzed glucose to produce H(2)O(2) which was subsequently reduced by HRP to in situ generate O(2), then PdNPs as catalyst for the ECL reaction of peroxydisulfate/O(2). The present immunosensor was used to detect α-1-fetoprotein (AFP) and showed a wide linear range of 1×10(-5)-100ng mL(-1), with a low detection limit of 3.3fg mL(-1)(S/N=3). This new signal amplification strategy for preparation of the ECL immunosensor could be easily realized and has a potential application in ultrasensitive bioassays.
Talanta | 2013
Yaling Cao; Ruo Yuan; Yaqin Chai; Huijing Liu; Yuhong Liao; Ying Zhuo
An ultrasensitive electrochemiluminescence (ECL) immunosensor was constructed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on an amplified cathodic ECL of luminol at low potential. Firstly, Au nanoparticles (AuNPs) were electrodeposited onto single walled carbon nanotube-graphene composites (CNTs-Gra) coated glass carbon electrode (GCE) with enhanced surface area and good biocompatibility to capture primary antibody (Ab1) and then bind the antigen analytes. Secondly, Pd and Pt nanoparticles (Pd&PtNPs) decorated reduced graphene oxide (Pd&PtNPs@rGO) and glucose oxidase (GOD) labeled secondary antibody (Pd&PtNPs@ rGO-GOD-Ab2) could be captured onto the electrode surface by a sandwich immunoassay protocol to generate amplified cathodic ECL signals of luminol in the presence of glucose. The Pd&PtNPs@rGO composites and loaded GOD promoted luminol cathodic ECL response by efficiently catalyzing glucose to in-situ produce amount of hydrogen peroxide (H2O2) working as a coreactant of luminol. Then in turn Pd&PtNPs catalyzed H2O2 to generate various reactive oxygen species (ROSs), which accelerated the cathodic ECL reaction of luminol, enhanced the cathodic ECL intensity of luminol and improved the sensitivity of the immunosensor. The as-proposed ECL immunosensor exhibited sensitive response on the detection of CEA ranging from 0.0001 ng mL(-1) to 160 ng mL(-1) with a detection limit of 0.03 pg mL(-1) (S/N=3). Moreover, the stability, specificity, lifetime and reproducibility tests demonstrated the feasibility of the developed immunoassay, which can be further extended to the detection of other disease biomarkers.
Analytica Chimica Acta | 2012
Xianxue Gan; Ruo Yuan; Yaqin Chai; Yali Yuan; Yaling Cao; Yuhong Liao; Huijing Liu
A novel tracer, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) functionalized graphene sheet (GS) composite (GS-TCDA), is employed to label the secondary anti-thrombin aptamer (TBA) to construct an ultrasensitive electrochemiluminescent sandwich-type aptasensor. The GS provided large surface area for loading abundant PTCDA and TBA with good stability and biocompatibility. Because of the excellent electroconductivity of GS and the desirable optical properties of PTCDA, the as-formed Apt II bioconjugate considerably amplified the electrochmiluminescence (ECL) signal of peroxydisulfate (S(2)O(8)(2-)) and worked as the desirable label for Apt II. On the basis of the considerably amplified ECL signal and sandwich format, an extremely wide range from 1 fM to 1 nM with an ultralow detection limit of 0.33 fM for thrombin was obtained. Additionally, the selectivity and stability of the proposed aptasensor were also excellent. Thus, this procedure has great promise for detection of thrombin present at ultra-trace levels during early stage of diseases.
Biosensors and Bioelectronics | 2013
Haijun Wang; Ruo Yuan; Yaqin Chai; Yaling Cao; Xianxue Gan; Yinfeng Chen; Yan Wang
A novel signal amplification strategy of mimicking bi-enzyme synergetic catalysis to generate coreactant in situ was designed to fabricate an ultrasensitive peroxydisulfate electrochemiluminescence (ECL) immunosensor for detection of Streptococcus suis serotype 2 (SS2). It was the first time to detect SS2 by using ECL. Through the interaction between l-cysteine (l-cys) and hollow PtPd bimetal alloy nanoparticles (HPtPd) to form ((l-cys-HPtPd)n) nanocomposites, the loading amount of l-cys and HPtPd was greatly increased, which could greatly enhance the ECL signal of peroxydisulfate. At the same time, Glucose Oxidase (GOD), used to block nonspecific binding sites of (l-cys-HPtPd)n nanocomposites, could rapidly oxidize d-glucose in the detection solution into gluconic acid accompanying with the generation of H2O2, which was further catalyzed by HPtPd to generate O2. And O2, acted as the coreactant of peroxydisulfate, could greatly amplify the ECL signal. In the process, HPtPd could be regarded as mimicking enzyme, the effect of which was similar to horseradish peroxidase (HRP) in generating O2. With the several amplification factors of a sandwich-type structure we designed, a wide linear ranged from 0.0001 to 100ngmL(-1) was acquired with a relatively low detection limit of 33fgmL(-1) for SS2. The present work demonstrated that the novel strategy had the great advantages in sensitivity, selectivity and reproducibility which might hold a new promise for highly sensitive bioassays applied in clinical detection.
Talanta | 2013
Lijuan Xiao; Yaqin Chai; Ruo Yuan; Yaling Cao; Haijun Wang; Lijuan Bai
In this work, we described a simple and highly sensitive electrochemiluminescence (ECL) strategy for IgG detection. Firstly, L-cysteine functionalized reduced graphene oxide composite (L-cys-rGO) was decorated on the glassy carbon electrode (GCE) surface. Then anti-IgG was immobilized on the modified electrode surface through the interaction between the carboxylic groups of the L-cys-rGO and the amine groups in anti-IgG. And then biotinylated anti-IgG (bio-anti-IgG) was assembled onto the electrode surface based on the sandwich-type immunoreactions. By the conjunction of biotin and streptavidin (SA), SA was immobilized, which in turn, combined with the biotin labeled initiator strand (S1). In the presence of two single DNA strands of glucose oxidase labeled S2 (GOD-S2) and complementary strand (S3), S1 could trigger the hybridization chain reaction (HCR) among S1, GOD-S2 and S3. Herein, due to HCR, numerous GOD was efficiently immobilizated on the sensing surface and exhibited excellent catalysis towards glucose to in situ generate amounts of hydrogen peroxide (H2O2), which acted as luminols co-reactant to significantly enhance the ECL signal. The proposed ECL immunosensor presented predominate stability and high sensibility for determination of IgG in the range from 0.1 pg mL(-1) to 100 ng mL(-1) with a detection limit of 33 fg mL(-1) (S/N=3). Additionally, the designed ECL immunosensor exhibited a promising application for other protein detection.
Chemical Communications | 2012
Ni Liao; Ying Zhuo; Yaqin Chai; Yun Xiang; Yaling Cao; Ruo Yuan; Jing Han
A novel sandwich-type electrochemiluminescent immunoassay utilizing apoferritin-templated poly(ethylenimine) (PEI) nanoparticles as labels based on the in situ release of the co-reactant of PEI was developed for sensitive detection of HCG with a low detection limit of 0.17 μIU mL(-1).