Yan Chuanliang
China University of Petroleum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yan Chuanliang.
Arabian Journal of Geosciences | 2015
Yan Chuanliang; Deng Jingen; Hu Lianbo; Chen Zijian; Yan Xinjiang; Lin Hai; Tan Qiang; Yu Baohua
Shale gas reservoirs are characterized by tight matrix, well-developed micro-fissures, and laminations. The study about the failure of shale under compression is of great significance to safe drilling operation and the subsequent reservoir stimulation. The variation of rock mechanical properties with the angle between the axial stress and bedding plane normal (coring angle) is analyzed based on laboratory tests. A failure criterion is applied and verified to describe the strength of shale. Moreover, ultrasonic technology is used to study the damage characteristics of shale during the uniaxial compression process. The experimental results show that shale strength decreases initially and then increases with the increase of the coring angle. The Young’s modulus and Poisson’s ratio increase with the increase of coring angle. In a compression process, damage is essentially the development of new micro-cracks induced by the compression. Shale failure is the microscopical reflection of the process of the generation and expansion of axial micro-cracks, so it is the result of damage accumulation. The variation of the lateral p wave velocity can function as a monitor of the development process of shale damage. The damage factor will increase in the linear elastic stage and then enlarge rapidly after entering the stage of unstable micro-crack expansion.
Journal of Energy Resources Technology-transactions of The Asme | 2014
Yan Chuanliang; Deng Jingen; Lai Xiangdong; Li Xiaorong; Feng Yongcun
Deepwater shallow sediment is less-consolidated, with a rock mechanical behavior similar to saturated soil. It is prone to borehole shrinkage and downhole leakage. Assume the deepwater shallow sediments are homogeneous, isotropic, and ideally elastoplastic materials, and formation around the borehole is divided into elastic and plastic zone. The theories of small deformation and large deformation are, respectively, adopted in the elastic and plastic zone. In the plastic zone, Mohr–Coulomb strength criterion is selected. The stress and deformation distributions in these two zones, and the radius of plastic zone are derived. The collapse pressure calculation formula of deepwater shallow sediments under the control of different shrinkage rates is obtained. With the introduction of excess pore pressure theory in soil mechanics, the distribution rule of excess pore pressure in these two zones is obtained. Combined with hydraulic fracturing theory, the fracture mechanism of shallow sediments is analyzed and the theoretical formula of fracture pressure is given. The calculation results are quite close to the practically measured results. So the reliability of the theory is confirmed.
Journal of Geophysics and Engineering | 2014
Yan Chuanliang; Deng Jingen; Yu Baohua; Liu Hailong; Deng Fucheng; Chen Zijian; Hu Lianbo; Zhu Hai-yan; Han Qin
Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.
The Scientific World Journal | 2014
Wang Yu; Liu Baolin; Zhu Hai-yan; Yan Chuanliang; Li Zhijun; Wang Zhiqiao
When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granites stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.
Royal Society Open Science | 2018
Zhang Chao; Yan Chuanliang; Liu Yuwen; Li Yang; Cheng Yuanfang; Tian Ji
The ever-decreasing oil resources receive more and more attention for the exploration and development of heavy oil reservoirs. Owing to the high viscosity and poor fluidity of heavy oil, it is necessary to use the method of injecting high-temperature fluid in the development process. But, this will cause a significant increase in the temperature in oil reservoir, and thus the compression coefficient of reservoir rock has a greater impact. The compression coefficient of heavy oil reservoirs at different temperatures was tested. The results show that the compression coefficient of rock is closely related to the nature of rock itself and its stress and temperature environment: the compression coefficient increases with the increase in rock porosity; the compression coefficient decreases with the increase in the effective confining pressure and increases with the increase in temperature. When the temperature is low, the increase in the compression coefficient is larger. As the temperature increases, the increase in the compression coefficient tends to decrease gradually. Because the temperature of the reservoir is higher than that of the ground, the influence of the temperature on the reservoir compression coefficient should be taken into account when carrying out the production forecast.
Journal of Petroleum Exploration and Production Technology | 2017
Yan Chuanliang; Cheng Yuanfang; Tian Ji; Zhu Guojin; Yuan Zhongchao; Liu Yuwen; Deng Fucheng
The diminishing oil resources make the exploration and development of heavy oil reservoirs more and more important. Heavy oil reservoirs need steam stimulation or other thermal development methods; temperature increasing during the thermal recovery process will inevitably affect the reservoir compressive characteristics. In order to study the variation of the compression coefficient of heavy oil reservoirs in the multi-round steam stimulation process, the compression coefficients of the reservoirs after different temperature and pore pressure cycles were tested. The results show that the compression coefficient of heavy oil reservoir decreases with the increase in effective confining pressure and increases with the increase in test temperature; After the temperature and pore pressure cycle, the compression coefficient of the rock is greatly reduced; the decrease in range of compression coefficient of the reservoir after the temperature and pore pressure cycle increases with the increase in the test temperature, and increases with the increase in maximum effective confining pressure. The dynamic variation of the reservoir compression coefficient must be taken into account in the prediction of the production capacity of multi-round steam stimulation.
Archive | 2015
Huang Haoyong; Cheng Yuanfang; Han Zhongying; Yan Chuanliang; Zhu Xinchao; Jia Jianghong; Ma Qingtao
Archive | 2014
Yu Baohua; Yan Chuanliang; Deng Jingen
Archive | 2014
Yu Baohua; Yan Chuanliang; Deng Jingen
Archive | 2017
Yan Chuanliang; Chen Kaiwen; Cheng Yuanfang; Ding Jiping; Teng Fei; Li Qingchao; Zhang Huaiwen