Yan-gao Man
Armed Forces Institute of Pathology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yan-gao Man.
Cancer Research | 2004
Yun-Ge Zhao; Aizhen Xiao; Hyun I. Park; Robert G. Newcomer; Mei Yan; Yan-gao Man; Sue C. Heffelfinger; Qing-Xiang Amy Sang
Local disruption of the integrity of both the myoepithelial cell layer and the basement membrane is an indispensable prerequisite for the initiation of invasion and the conversion of human breast ductal carcinoma in situ (DCIS) to infiltrating ductal carcinoma (IDC). We previously reported that human endometase/matrilysin-2/matrix metalloproteinase (MMP) 26-mediated pro-gelatinase B (MMP-9) activation promoted invasion of human prostate carcinoma cells by dissolving basement membrane proteins (Y. G. Zhao et al., J. Biol. Chem., 278: 15056–15064, 2003). Here we report that tissue inhibitor of metalloproteinases (TIMP)-2 and TIMP-4 are potent inhibitors of MMP-26, with apparent Ki values of 1.6 and 0.62 nm, respectively. TIMP-2 and TIMP-4 also inhibited the activation of pro-MMP-9 by MMP-26 in vitro. The expression levels of MMP-26, MMP-9, TIMP-2, and TIMP-4 proteins in DCIS were significantly higher than those in IDC, atypical intraductal hyperplasia, and normal breast epithelia adjacent to DCIS and IDC by immunohistochemistry and integrated morphometry analysis. Double immunofluorescence labeling and confocal laser scanning microscopy revealed that MMP-26 was colocalized with MMP-9, TIMP-2, and TIMP-4 in DCIS cells. Higher levels of MMP-26 mRNA were also detected in DCIS cells by in situ hybridization.
Archives of Pathology & Laboratory Medicine | 2000
Mojgan Devouassoux-Shisheboran; Schammel; Yan-gao Man; Fattaneh A. Tavassoli
OBJECTIVE To predict if antiestrogenic agents are useful in the treatment of breast fibromatoses, we undertook an immunohistochemical study of sex steroid hormone receptors (estrogen receptor, progesterone receptor, and androgen receptor) and protein pS2 in 33 cases. METHODS The morphologic and immunohistochemical findings were correlated to patient menstrual status, which was categorized as childbearing age (n = 15), perimenopausal (n = 8), and postmenopausal (n = 10). RESULTS Fibromatoses in women of childbearing age were more cellular, more mitotically active, and displayed a larger proportion of cells with mild atypia than those in perimenopausal and postmenopausal women. The hormonal status of these 3 groups does not explain the morphologic variations observed in these groups, inasmuch as no immunostaining for any of the hormone receptors was detected in the tumors. CONCLUSIONS The absence of estrogen receptor and pS2 in breast fibromatoses suggests that antiestrogenic agents are unlikely to be beneficial in the management of these tumors. Assessment of the hormone receptor profile is a useful adjunct in the diagnosis of spindle cell lesions of the breast. Although most spindle cell carcinomas as well as fibromatoses of the breast do not express estrogen or progesterone receptors, the absence of androgen receptor reactivity would favor a diagnosis of fibromatosis over that of myofibroblastoma.
Breast Cancer Research | 2014
Xiaohui Tan; Jin Peng; Yebo Fu; Shejuan An; M. Katayoon Rezaei; Sana Tabbara; Christine B. Teal; Yan-gao Man; Rachel F. Brem; Sidney W. Fu
IntroductionTriple-negative breast cancer (TNBC) represents 15 to 20% of all types of breast cancer; however, it accounts for a large number of metastatic cases and deaths, and there is still no effective treatment. The deregulation of microRNAs (miRNAs) in breast cancer has been widely reported. We previously identified that miR-638 was one of the most deregulated miRNAs in breast cancer progression. Bioinformatics analysis revealed that miR-638 directly targets BRCA1. The aim of this study was to investigate the role of miR-638 in breast cancer prognosis and treatment.MethodsFormalin-fixed, paraffin-embedded (FFPE) breast cancer samples were microdissected into normal epithelial and invasive ductal carcinoma (IDC) cells, and total RNA was isolated. Several breast cancer cell lines were used for the functional analysis. miR-638 target genes were identified by TARGETSCAN-VERT 6.2 and miRanda. The expression of miR-638 and its target genes was analyzed by real-time qRT-PCR and Western blotting. Dual-luciferase reporter assay was employed to confirm the specificity of miR-638 target genes. The biological function of miR-638 was analyzed by MTT chemosensitivity, matrigel invasion and host cell reactivation assays.ResultsThe expression of miR-638 was decreased in IDC tissue samples compared to their adjacent normal controls. The decreased miR-638 expression was more prevalent in non-TNBC compared with TNBC cases. miR-638 expression was significantly downregulated in breast cancer cell lines compared to the immortalized MCF-10A epithelial cells. BRCA1 was predicted as one of the direct targets of miR-638, which was subsequently confirmed by dual-luciferase reporter assay. Forced expression of miR-638 resulted in a significantly reduced proliferation rate as well as decreased invasive ability in TNBC cells. Furthermore, miR-638 overexpression increased sensitivity to DNA-damaging agents, ultraviolet (UV) and cisplatin, but not to 5-fluorouracil (5-FU) and epirubicin exposure in TNBC cells. Host cell reactivation assays showed that miR-638 reduced DNA repair capability in post UV/cisplatin-exposed TNBC cells. The reduced proliferation, invasive ability, and DNA repair capabilities are associated with downregulated BRCA1 expression.ConclusionsOur findings suggest that miR-638 plays an important role in TNBC progression via BRCA1 deregulation. Therefore, miR-638 might serve as a potential prognostic biomarker and therapeutic target for breast cancer.
Journal of Cancer | 2013
Yan-gao Man; Alexander Stojadinovic; Jeffrey Mason; Itzhak Avital; Anton J. Bilchik; Bjoern L. D. M. Bruecher; Mladjan Protic; Aviram Nissan; Mina Izadjoo; Xichen Zhang; Anahid Jewett
It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.
Journal of Cancer | 2013
Anahid Jewett; Yan-gao Man; Han-Ching Tseng
Accumulated evidence from our laboratory indicates that conditioned or anergized NK cells have the ability to induce resistance of healthy stem cells and transformed cancer stem cells through both secreted factors and direct cell-cell contact by inducing differentiation. Cytotoxic function of NK cells is suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. Furthermore, decreased peripheral blood NK cell function has been documented in many cancer patients. We have previously shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs) as compared to their more differentiated oral squamous carcinoma cells (OSCCs). In addition, human embryonic stem cells (hESCs), human mesenchymal stem cells (hMSCs), human dental pulp stem cells (hDPSCs) and induced human pluripotent stem cells (hiPSCs) were all significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or gene deletion of COX2 significantly augmented NK cell function. Furthermore, the induction of resistance of the stem cells to NK cell mediated cytotoxicity and their subsequent differentiation is amplified when either the stem cells or the NK cells were cultured in the presence of monocytes. Therefore, we propose that the two stages of NK cell maturation namely CD16+CD56dimCD69- NK cells are important for the lysis of stem cells or poorly differentiated cells whereas the CD16dim/-CD56dim/+CD69+NK cells are important for differentiation and eventual regeneration of the tissues and the resolution of inflammation, thus functionally serving as regulatory NK cells (NKreg). CD16 receptor on the NK cells were found to be the receptor with significant potential to induce NK cell anergy, however, our recent data indicated that NKp46 but not NKp30 or NKp44 were also able to induce significant anergy in NK cells, although the levels were less when compared to CD16 receptor triggering. The concept of split anergy in NK cells and generation of NKreg and its contribution to cell differentiation, tissue repair and regeneration and in tumor resistance will be discussed in this review.
Breast Cancer Research and Treatment | 2005
Yan-gao Man; Sidney W. Fu; Arnold M. Schwartz; Joseph J. Pinzone; Samuel J. Simmens; Patricia E. Berg
SummaryBackgroundOur previous studies revealed that the mRNA encoded by BP1, a member of the homeobox gene superfamily of transcription factors, was expressed in leukemia and infiltrating breast ductal carcinoma (IDC). This study investigated the immunohistochemical profile of BP1, to determine whether the expression of BP1 protein correlated with breast tumor progression and invasion and whether BP1 was co-localized with erbB2.DesignParaffin sections from normal reduction mammoplasties (n = 34) and a variety of in situand invasive breast cancers (n = 270) were either singly immunostained for BP1, or doubly immunostained for BP1 plus either erbB2 or Ki-67.ResultsThe prevalence of BP1 positive cells and the intensity of BP1 immunoreactivity increased with the extent of ductal proliferation and carcinogenesis. BP1 expression was barely detectable in normal reduction mammoplasties compared to distinct staining in 21, 46, and 81% of hyperplastic, in situ, and infiltrating lesions, respectively. In cases with co-existing normal, hyperplastic, in situ, and invasive lesions, the tumor cells of the invasive lesions consistently showed the highest frequency and the highest intensity of BP1 immunostaining, followed by in situ tumor cells. Double immunostaining revealed that BP1 co-localized with a subset of erbB2 positive cells in all 15 in situ and IDC tumors examined, and that BP1 positive cells had a substantially higher proliferation rate than morphologically similar cells without BP1 expression.ConclusionThese findings suggest that BP1 is an important upstream factor in an oncogenic pathway, and that expression of BP1 may reliably reflect or directly contribute to tumor progression and/or invasion.
Frontiers in Immunology | 2014
Han-Ching Tseng; Vickie T. Bui; Yan-gao Man; Nicholas A. Cacalano; Anahid Jewett
In this paper, we provide evidence that anergized NK cells through secreted factors and direct cell–cell contact have the ability to induce differentiation of healthy dental pulp stem cells and stem cell of apical papillae as well as transformed oral squamous cancer stem cell (OSCSC) and Mia-Paca-2, poorly differentiated stem-like pancreatic tumors, resulting in their resistance to NK cell-mediated cytotoxicity. Induction of NK cell resistance and differentiation in the stem cells correlated with the increased expression of CD54, B7H1, and MHC class I, and mediated by the combination of membrane-bound or secreted IFN-γ and TNF-α from the NK cells since antibodies to both cytokines and not each one alone were able to inhibit differentiation or resistance to NK cells. Similarly, antibodies to both TNF-α and IFN-γ were required to prevent NK-mediated inhibition of cell growth, and restored the numbers of the stem cells to the levels obtained when stem cells were cultured in the absence of anergized NK cells. Interestingly, the effect of anti-IFN-γ antibody in the absence of anti-TNF-α antibody was more dominant for the prevention of increase in surface receptor expression since its addition abrogated the increase in CD54, B7H1, and MHC class I surface expression. Antibodies to CD54 or LFA-1 was unable to inhibit differentiation whereas antibodies to MHC class I but not B7H1 increased cytotoxicity of well-differentiated oral squamous carcinoma cells as well as OSCSCs differentiated by the IL-2 + anti-CD16 mAb-treated NK cells whereas it inhibited the cytotoxicity of NK cells against OSCSCs. Thus, NK cells may inhibit the progression of cancer by killing and/or differentiation of cancer stem cells, which severely halt cancer growth, invasion, and metastasis.
Modern Pathology | 2009
Arnold M. Schwartz; Yan-gao Man; M. Katayoon Rezaei; Samuel J. Simmens; Patricia E. Berg
BP1 is a member of the homeobox gene superfamily of transcription factors that are essential for early development. Significant mRNA expression and immunohistochemical reactivity of BP1 is present in a majority of breast cancers and in all cases of inflammatory breast cancer. This study attempts to determine whether BP1 expression is detectable in prostate cancer, another hormone dependent solid tumor, and whether this expression correlates with histopathologic and prognostic factors. Paraffin sections from radical prostatectomy cancer specimens and from tissue microarray sections of prostate cancer, obtained from the Prostate Cancer Tissue Registry (NIH), were assayed for BP1 immunoreactivity. Immunoreactivity scoring by two independent pathologists, using a three-tiered system (0, 1+, 2+), was recorded and correlated with Gleason scoring and prostatic specific antigen (PSA) biochemical recurrence. Ki-67 (MIB-1) immunoreactivity was performed to assess proliferation. Kappa and Cochran–Mantel–Haenszel statistical analyses were used to assess interobserver agreement and pathobiologic correlations. Significant BP1 immunoreactivity (2+) was identified in approximately 70% of prostatic adenocarcinomas, whether the analysis was performed on tissue sections (50 cases) or tissue microarray platforms (123 cases). BP1 immunoreactivity was seen in <5% of normal acinar cells. The agreement between two separate observers was very good, with kappa-statistics >0.7. In tissue sections, 12 cases with paired carcinoma and prostatic intraepithelial neoplasia (PIN) showed concordance with strong immunoreactivity. Gleason scores or prostatic specific antigen (PSA) biochemical recurrences were not correlated with strong BP1 immunoreactivity. Tumor proliferation, assayed with Ki-67 (MIB-1) immunoreactivity, was higher in cancer cells that were BP1 immunoreactive, relative to those that were BP1 non-reactive. These findings suggest that BP1 is an important upstream factor in the carcinogenic pathway of prostate cancer and that the expression of BP1 may reflect or directly contribute to tumor progression and/or invasion.
Clinical & Experimental Metastasis | 2010
Ziad J. Sahab; Yan-gao Man; Suzan M. Semaan; Robert G. Newcomer; Stephen W. Byers; Qing-Xiang Amy Sang
Ductal carcinoma in situ (DCIS) represents the earliest identifiable breast cancer lesion. Disruption of the myoepithelial cell layer and basement membrane is a prerequisite for DCIS to initiate invasion into the stroma. The majority of epithelial cells overlying a focally-disrupted myoepithelial cell layer are estrogen receptor-alpha negative (ER(−)); however, adjacent cells within the same duct confined by an intact myoepithelial cell layer express high levels of ER. These ER (+) and ER (−) cells were microdissected from the same ducts of breast cancer patients. Differential proteins expressed by ER(+) and ER(−) cells were identified using two-dimensional gel electrophoresis followed by mass spectrometry and Western blot analysis. ER(−) cells express lower levels of superoxide dismutase, RalA binding protein, galectin-1, uridine phosphorylase 2, cellular retinoic acid-binding protein 1, S100 calcium binding protein A11, and nucleoside diphosphate kinase A or non-metastasis protein 23-H1 (nm23-H1). The upregulated protein, Rho GDP-dissociation inhibitor 1 alpha, may induce chemotherapy resistance. The significant findings are that the microdissected ER(−) cells express 12.6 times less cellular retinoic acid-binding protein 1, a protein involved in cellular differentiation, and 4.1 times less nucleoside diphosphate kinase A or nm23-H1, a metastasis suppressor, and express fewer proteins than adjacent ER(+) cells. The collective role of the alterations of protein expression in ER(−) cells may be to promote a more malignant phenotype than adjacent ER(+) cells, including a decreased ability to undergo apoptosis and differentiation, and an increased potential to damage DNA, metastasize, and resist to chemotherapy.
Journal of Immunotoxicology | 2014
Anahid Jewett; Yan-gao Man; Nicholas A. Cacalano; Janko Kos; Han-Ching Tseng
Abstract Evidence has previously been demonstrated for the role of NK cells in specific elimination of healthy stem cells (e.g. hMSC, hDPSC, hESC, hiPSC) as well as cancer stem cells, but not their differentiated counterparts. There is also a stage-wise susceptibility to NK cell-mediated cyto-toxicity in tumors, in which case the poorly-differentiated tumors are lysed much more than moderately-differentiated tumors. Well-differentiated tumors were lysed the least compared to either moderately- or poorly-differentiated tumors. It has also been reported that inhibition of differentiation or reversion of cells to a less-differentiated stage by blocking NF-κB or by gene deletion of COX2 significantly augmented NK cell cytotoxicity against both transformed and healthy cells. Additionally, the cytotoxic function of NK cells was severely inhibited against stem cells when they were cultured in the presence of monocytes. Therefore, it is proposed that CD16+CD56dimCD69− NK cells were important for the selection of stem cells, whereas the CD16dim/−CD56dim/+CD69+ anergized NK cells were important for differentiation and eventual regeneration of the tissues and the resolution of inflammation, thus potentially serving as regulatory NK (NKreg) cells. The concept of ‘split anergy’ in NK cells and the generation of NKreg cells with regard to contributions to cell differentiation, tissue repair and regeneration and in tumor resistance are discussed in this review.