Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yan-Hua Bing is active.

Publication


Featured researches published by Yan-Hua Bing.


Neuroscience Letters | 2011

Sensory stimulus evokes inhibition rather than excitation in cerebellar Purkinje cells in vivo in mice.

Chun-Ping Chu; Yan-Hua Bing; De-Lai Qiu

Cerebellar Purkinje cells (PC) response precisely to tactile stimulus via granule cells, however, the interaction between sensory evoked synaptic input and the resulting pattern of output spikes in cerebellar cortex is unclear. In this study, we used electrophysiological recording and pharmacological methods to investigate the cerebellar PC in response to natural stimulus on ipsilateral whisker pad in urethane-anesthetized mice. We found that air-puff stimulus on ipsilateral whisker pad evoked neither complex spikes nor simple spike firing, but indeed evoked a strong GABA(A) receptor-mediated inhibition in PCs in cerebellar cortex folium Crus II. Field potential recordings from both molecular layer and PC layer showed that air-puff stimulus evoked a sequence of parallel fiber volley followed by a GABA(A) receptor-mediated inhibition, which completely blocked by AMPA receptor antagonist, NBQX. Cell-attached recordings showed that air-puff stimulus evoked a pause of simple spike firing, GABA(A) receptor antagonist abolished the pause, revealed the tactile stimulus-evoked spike firing in PCs. These results indicated that natural stimulus of whisker pad neither evoked complex spikes, nor fired simple spikes, but induced inhibition in PCs, suggesting that the interneuron network are rapid activated and involved in controlling the spread of sensory information processing in mouse cerebellar cortex folium Crus II.


PLOS ONE | 2011

Synaptic Responses Evoked by Tactile Stimuli in Purkinje Cells in Mouse Cerebellar Cortex Crus II In Vivo

Chun-Ping Chu; Yan-Hua Bing; Quan-Ri Liu; De-Lai Qiu

Background Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs) via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice. Methods and Main Results Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6–8-week-old) HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0), the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs) in the somata of PCs. Application of SR95531, a specific GABAA receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs) in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation. Conclusions These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABAA receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.


Neuroscience Letters | 2015

Dynamic properties of sensory stimulation evoked responses in mouse cerebellar granule cell layer and molecular layer.

Yan-Hua Bing; Guang-Jian Zhang; Lei Sun; Chun-Ping Chu; De-Lai Qiu

Sensory information coming from climbing fiber and mossy fiber-granule cell pathways, generates motor-related outputs according to internal rules of integration and computation in the cerebellar cortex. However, the dynamic properties of sensory information processing in mouse cerebellar cortex are less understood. Here, we studied the dynamic properties of sensory stimulation-evoked responses in the cerebellar granule cell layer (GCL) and molecular layer (ML) by electrophysiological recordings method. Our data showed that air-puff stimulation (5-10 ms in duration) of the ipsilateral whisker pad evoked single-peak responses in the GCL and ML; whereas a duration of stimulation ≥30 ms in GCL and ≥60 ms in ML, evoked double-peak responses that corresponded with stimulation-on and -off responses via mossy fiber pathway. The highest frequency of stimulation train for evoking GCL responses was 33 Hz. In contrast, the highest frequency of stimulation train for evoking ML responses was 4 Hz. These results indicate that the cerebellar granule cells transfer the high-fidelity sensory information from mossy fibers, which is cut-off by molecular layer interneurons (MLIs). Our results suggest that the MLIs network acts as a low-pass filter during the processing of high-frequency sensory information.


Frontiers in Cellular Neuroscience | 2016

N-methyl-D-Aspartate Receptors Contribute to Complex Spike Signaling in Cerebellar Purkinje Cells: An In vivo Study in Mice

Heng Liu; Yan Lan; Yan-Hua Bing; Chun-Ping Chu; De-Lai Qiu

N-methyl-D-aspartate receptors (NMDARs) are post-synaptically expressed at climbing fiber-Purkinje cell (CF-PC) synapses in cerebellar cortex in adult mice and contributed to CF-PC synaptic transmission under in vitro conditions. In this study, we investigated the role of NMDARs at CF-PC synapses during the spontaneous complex spike (CS) activity in cerebellar cortex in urethane-anesthetized mice, by in vivo whole-cell recording technique and pharmacological methods. Under current-clamp conditions, cerebellar surface application of NMDA (50 μM) induced an increase in the CS-evoked pause of simple spike (SS) firing accompanied with a decrease in the SS firing rate. Under voltage-clamp conditions, application of NMDA enhanced the waveform of CS-evoked inward currents, which expressed increases in the area under curve (AUC) and spikelet number of spontaneous CS. NMDA increased the AUC of spontaneous CS in a concentration-dependent manner. The EC50 of NMDA for increasing AUC of spontaneous CS was 33.4 μM. Moreover, NMDA significantly increased the amplitude, half-width and decay time of CS-evoked after-hyperpolarization (AHP) currents. Blockade of NMDARs with D-(-)-2-amino-5-phosphonopentanoic acid (D-APV, 250 μM) decreased the AUC, spikelet number, and amplitude of AHP currents. In addition, the NMDA-induced enhancement of CS activity could not be observed after α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors were blocked. The results indicated that NMDARs of CF-PC synapses contributed to the spontaneous CS activity by enhancing CS-evoked inward currents and AHP currents.


Frontiers in Cellular Neuroscience | 2015

Facial stimulation induces long-term depression at cerebellar molecular layer interneuron-Purkinje cell synapses in vivo in mice.

Yan-Hua Bing; Mao-Cheng Wu; Chun-Ping Chu; De-Lai Qiu

Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC), parallel fiber–molecular layer interneurons (PF–MLI) and mossy fiber–granule cell (MF–GC) synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD) of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1) receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1) antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA) receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB)-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.


Regulatory Peptides | 2013

Intracerebroventricular injection of stresscopin-related peptide enhances cardiovascular function in conscious rats

Ri Jin; Mei-Zi Li; Yan-Hua Bing; Ri-Long Piao; Ying-Jun Li; Qing-Hua Jin; De-Lai Qiu; Hiroshi Kannan; Chun-Ping Chu

Stresscopin-related peptide (SRP), which is a member of the corticotropin-releasing factor (CRF) family, is a high-affinity ligand for the type 2 corticotropin-releasing factor receptor (CRF-R2) and is involved in stress-coping responses. Central treatment with SRP suppresses food intake, delays gastric emptying and decreases heat-induced edema, but the effects of central administration of SRP on the cardiovascular system are unclear. Here we examined the effects of intracerebroventricular (i.c.v.) administration of SRP on cardiovascular function, and compared the cardiovascular effects of SRP and stresscopin (SCP). Our results showed that i.c.v. administration of SRP (0.5nmol) increased mean arterial blood pressure (MABP) and heart rate (HR), but failed to increase plasma norepinephrine and epinephrine levels. Compared with an equivalent dose of SCP, the area under the curve (AUC) values for the changes in MABP and HR were significantly smaller with SRP, indicating that the cardiovascular effects of SRP were weaker than those mediated by SCP. Pre-treatment with a selective CRF-R2 antagonist, antisauvagine-30 (4nmol, i.c.v.) abolished the SRP and SCP induced changes in MABP and HR. These results indicate that central administration of SRP induces a weaker enhancement of cardiovascular function through CRF-R2 than that induced by SCP and that these effects are mediated without increasing plasma norepinephrine and epinephrine levels.


PLOS ONE | 2013

Effects of Stresscopin on Rat Hypothalamic Paraventricular Nucleus Neurons In Vitro

Chun-Ping Chu; Wen-Zhe Jin; Yan-Hua Bing; Qing-Hua Jin; Hiroshi Kannan; De-Lai Qiu

The effects of stresscopin (SCP) on rat paraventricular nucleus (PVN) neurons were examined using whole-cell patch-clamp recordings and single-cell reverse-transcription multiplex polymerase chain reaction (SC-RT-mPCR) techniques. Under current-clamp conditions, bath application of SCP (100 nM) induced inhibition in 35.2% (37/105) of putative magnocellular neurons and 24.7% (20/81) of putative parvocellular neurons, and excitation in 5.7% (6/105) of putative magnocellular neurons and 18.5% (15/81) of putative parvocellular neurons. SCP-induced inhibition persisted in the presence of a mixture of TTX, a voltage-gated Na+ channel blocker, CNQX, an AMPA/kainate receptor antagonist and bicuculline, a GABAA receptor antagonist, whereas SCP-induced excitation of PVN neurons was reversed by the mixture. The SCP-induced inhibition of PVN neurons was abolished by bath application of antisauvagine-30, a selective CRF receptor 2 (CRF-R2) antagonist. Under voltage-clamp conditions, SCP evoked outward currents at the holding potential (−60 mV), which reversed near the potassium equilibrium potential. The SCP-evoked membrane currents were completely blocked by bath application of tertiapin-Q, a selective blocker of G protein-activated inwardly rectifying potassium (GIRK) channels. SC-RT-mPCR analysis indicated that all the SCP-sensitive PVN neurons (57 SCP-inhibited neurons, 21 SCP-excited neurons) expressed CRF-R1 and CRF-R2 mRNAs. Among SCP-hyperpolarized PVN neurons, oxytocin (OT) mRNA was detected in 91.8% of putative magnocellular neurons and 45.0% of putative parvocellular neurons. OT mRNA was also detected in 26.6% of SCP-depolarized parvocellular neurons, but not in SCP-depolarized magnocellular neurons. These results indicate that SCP inhibits a subpopulation of PVN neurons, especially OTergic magnocellular neurons, by enhancing the activity of GIRK channels via CRF-R2.


Scientific Reports | 2016

Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice.

Mao-Cheng Wu; Yan-Hua Bing; Chun-Ping Chu; De-Lai Qiu

Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs.


Frontiers in Cellular Neuroscience | 2018

Corticotrophin-Releasing Factor Modulates Cerebellar Purkinje Cells Simple Spike Activity in Vivo in Mice

Hong-Wei Wang; Jing-Tong Zhao; Bing-Xue Li; Shan-Shan Su; Yan-Hua Bing; Chun-Ping Chu; Wei-Ming Wang; Yu-Zi Li; De-Lai Qiu

Corticotropin-releasing factor (CRF) is a major neuromodulator that modulates cerebellar neuronal activity via CRF receptors during stress responses. In the cerebellar cortex, CRF dose-dependently increases the simple spike (SS) firing rate of Purkinje cells (PCs), while the synaptic mechanisms of this are still unclear. We here investigated the effect of CRF on the spontaneous SS activity of cerebellar PCs in urethane-anesthetized mice by in vivo electrophysiological recording and pharmacological methods. Cell-attached recordings from PCs showed that micro-application of CRF in cerebellar cortical molecular layer induced a dose-dependent increase in SS firing rate in the absence of GABAA receptor activity. The CRF-induced increase in SS firing rate was completely blocked by a nonselective CRF receptor antagonist, α-helical CRF-(9–14). Nevertheless, application of either a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM) or a selective CRF-R2 antagonist, antisauvagine-30 (200 nM) significantly attenuated, but failed to abolished the CRF-induced increase in PCs SS firing rate. In vivo whole-cell patch-clamp recordings from PCs showed that molecular layer application of CRF significantly increased the frequency, but not amplitude, of miniature postsynaptic currents (mEPSCs). The CRF-induced increase in the frequency of mEPSCs was abolished by a CRF-R2 antagonist, as well as protein kinase A (PKA) inhibitors. These results suggested that CRF acted on presynaptic CRF-R2 of cerebellar PCs resulting in an increase of glutamate release through PKA signaling pathway, which contributed to modulation of the cerebellar PCs outputs in Vivo in mice.


PLOS ONE | 2012

Roles of Molecular Layer Interneurons in Sensory Information Processing in Mouse Cerebellar Cortex Crus II In Vivo

Chun-Ping Chu; Yan-Hua Bing; Heng Liu; De-Lai Qiu

Collaboration


Dive into the Yan-Hua Bing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Kannan

Kyushu Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge