Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yan Pei is active.

Publication


Featured researches published by Yan Pei.


PLOS Genetics | 2011

Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

Qiang Gao; Kai Jin; Sheng-Hua Ying; Yongjun Zhang; Guohua Xiao; Yanfang Shang; Zhibing Duan; Xiao Xiao Hu; Xue-Qin Xie; Gang Zhou; Guoxiong Peng; Zhibing Luo; Wei Huang; Bing Wang; Weiguo Fang; Sibao Wang; Yi Zhong; Li-Jun Ma; Raymond J. St. Leger; Guoping Zhao; Yan Pei; Ming-Guang Feng; Yuxian Xia; Chengshu Wang

Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties.


Applied and Environmental Microbiology | 2005

Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence

Weiguo Fang; Bo Leng; Yuehua Xiao; Kai Jin; Jincheng Ma; Yanhua Fan; Jing Feng; Xingyong Yang; Yongjun Zhang; Yan Pei

ABSTRACT Entomopathogenic fungi can produce a series of chitinases, some of which act synergistically with proteases to degrade insect cuticle. However, chitinase involvement in insect fungus pathogenesis has not been fully characterized. In this paper, an endochitinase, Bbchit1, was purified to homogeneity from liquid cultures of Beauveria bassiana grown in a medium containing colloidal chitin. Bbchit1 had a molecular mass of about 33 kDa and pI of 5.4. Based on the N-terminal amino acid sequence, the chitinase gene, Bbchit1, and its upstream regulatory sequence were cloned. Bbchit1 was intronless, and there was a single copy in B. bassiana. Its regulatory sequence contained putative CreA/Crel carbon catabolic repressor binding domains, which was consistent with glucose suppression of Bbchit1. At the amino acid level, Bbchit1 showed significant similarity to a Streptomyces avermitilis putative endochitinase, a Streptomyces coelicolor putative chitinase, and Trichoderma harzianum endochitinase Chit36Y. However, Bbchit1 had very low levels of identity to other chitinase genes previously isolated from entomopathogenic fungi, indicating that Bbchit1 was a novel chitinase gene from an insect-pathogenic fungus. A gpd-Bbchit1 construct, in which Bbchit1 was driven by the Aspergiullus nidulans constitutive promoter, was transformed into the genome of B. bassiana, and three transformants that overproduced Bbchit1 were obtained. Insect bioassays revealed that overproduction of Bbchit1 enhanced the virulence of B. bassiana for aphids, as indicated by significantly lower 50% lethal concentrations and 50% lethal times of the transformants compared to the values for the wild-type strain.


Applied and Environmental Microbiology | 2007

Increased Insect Virulence in Beauveria bassiana Strains Overexpressing an Engineered Chitinase

Yanhua Fan; Weiguo Fang; Shujuan Guo; Xiaoqiong Pei; Yongjun Zhang; Yuehua Xiao; Demou Li; Kai Jin; Michael J. Bidochka; Yan Pei

ABSTRACT Entomopathogenic fungi are currently being used for the control of several insect pests as alternatives or supplements to chemical insecticides. Improvements in virulence and speed of kill can be achieved by understanding the mechanisms of fungal pathogenesis and genetically modifying targeted genes, thus improving the commercial efficacy of these biocontrol agents. Entomopathogenic fungi, such as Beauveria bassiana, penetrate the insect cuticle utilizing a plethora of hydrolytic enzymes, including chitinases, which are important virulence factors. Two chitinases (Bbchit1 and Bbchit2) have previously been characterized in B. bassiana, neither of which possesses chitin-binding domains. Here we report the construction and characterization of several B. bassiana hybrid chitinases where the chitinase Bbchit1 was fused to chitin-binding domains derived from plant, bacterial, or insect sources. A hybrid chitinase containing the chitin-binding domain (BmChBD) from the silkworm Bombyx mori chitinase fused to Bbchit1 showed the greatest ability to bind to chitin compared to other hybrid chitinases. This hybrid chitinase gene (Bbchit1-BmChBD) was then placed under the control of a fungal constitutive promoter (gpd-Bbchit1-BmChBD) and transformed into B. bassiana. Insect bioassays showed a 23% reduction in time to death in the transformant compared to the wild-type fungus. This transformant also showed greater virulence than another construct (gpd-Bbchit1) with the same constitutive promoter but lacking the chitin-binding domain. We utilized a strategy where genetic components of the host insect can be incorporated into the fungal pathogen in order to increase host cuticle penetration ability.


Nature Biotechnology | 2011

spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality

Mi Zhang; Xuelian Zheng; Shuiqing Song; Qiwei Zeng; Lei Hou; Demou Li; Juan Zhao; Yuan Wei; Xianbi Li; Ming Luo; Yuehua Xiao; Xiaoying Luo; Jinfa Zhang; Chengbin Xiang; Yan Pei

The capacity of conventional breeding to simultaneously improve the yield and quality of cotton fiber is limited. The accumulation of the plant hormone indole-3-acetic acid (IAA) in cotton fiber initials prompted us to investigate the effects of genetically engineering increased IAA levels in the ovule epidermis. Targeted expression of the IAA biosynthetic gene iaaM, driven by the promoter of the petunia MADS box gene Floral Binding protein 7 (FBP7), increased IAA levels in the epidermis of cotton ovules at the fiber initiation stage. This substantially increased the number of lint fibers, an effect that was confirmed in a 4-year field trial. The lint percentage of the transgenic cotton, an important component of fiber yield, was consistently higher in our transgenic plants than in nontransgenic controls, resulting in a >15% increase in lint yield. Fiber fineness was also notably improved.


Applied and Environmental Microbiology | 2009

Mitogen-Activated Protein Kinase hog1 in the Entomopathogenic Fungus Beauveria bassiana Regulates Environmental Stress Responses and Virulence to Insects

Yongjun Zhang; Jianhua Zhao; Weiguo Fang; Jianqing Zhang; Zhibing Luo; Mi Zhang; Yanhua Fan; Yan Pei

ABSTRACT Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. However, its insecticide efficacy in the field is often influenced by adverse environmental factors. Thus, understanding the genetic regulatory processes involved in the response to environmental stress would facilitate engineering and production of a more efficient biocontrol agent. Here, a mitogen-activated protein kinase (MAPK)-encoding gene, Bbhog1, was isolated from B. bassiana and shown to encode a functional homolog of yeast HIGH-OSMOLARITY GLYCEROL 1 (HOG1). A Bbhog1 null mutation was generated in B. bassiana by targeted gene replacement, and the resulting mutants were more sensitive to hyperosmotic stress, high temperature, and oxidative stress than the wild-type controls. These results demonstrate the conserved function of HOG1 MAPKs in the regulation of abiotic stress responses. Interestingly, ΔBbhog1 mutants exhibited greatly reduced pathogenicity, most likely due to a decrease in spore viability, a reduced ability to attach to insect cuticle, and a reduction in appressorium formation. The transcript levels of two hydrophobin-encoding genes, hyd1 and hyd2, were dramatically decreased in a ΔBbhog1 mutant, suggesting that Bbhog1 may regulate the expression of the gene associated with hydrophobicity or adherence.


Journal of Invertebrate Pathology | 2009

Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana

Weiguo Fang; Jin Feng; Yanhua Fan; Yongjun Zhang; Michael J. Bidochka; Raymond J. St. Leger; Yan Pei

Entomopathogenic fungi, such as Beauveria bassiana and Metarhizium anisopliae are being developed as alternatives to chemical insecticides. They infect insects by direct penetration of the cuticle using a combination of physical pressure and extracellular hydrolytic enzymes such as proteases and chitinases. Previously we found that overexpression of a subtilisin-like protease (Pr1A) or a chitinase (Bbchit1) resulted in increased virulence of M. anisopliae and B. bassiana, respectively. In this study, we found that a mixture of the B. bassiana Pr1A homolog (CDEP1) and Bbchit1 degraded insect cuticle in vitro more efficiently than either CDEP1 or Bbchit1 alone. Based on this we produced three plasmid constructs; (1) Bbchit1, (2) CDEP1, and (3) a fusion gene of Bbchit1 linked to CDEP1 each under the control of the constitutive gpd promoter from Aspergillus nidulans. B. bassiana transformants secreting the fusion protein (CDEP1:Bbchit1) penetrated the cuticle significantly faster than the wild type or transformants overexpressing either Bbchit1 or CDEP1. Compared to the wild type, the transformant overexpressing CDEP1 showed a 12.5% reduction in LT(50), without a reduction in LC(50). The LT(50) of the transformant expressing CDEP1:Bbchit1 was reduced by 24.9%. Strikingly, expression of CDEP1:Bbchit1 resulted in a 60.5% reduction in LC(50), more than twice the reduction obtained by overexpression of Bbchit1 (28.5%). This work represents a significant step towards the development of hypervirulent insect pathogens for effective pest control.


Plant Cell Reports | 2007

The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters

Xuelian Zheng; Wei Deng; Keming Luo; Hui Duan; Yongqin Chen; Richard J. McAvoy; Shuiqing Song; Yan Pei; Yi Li

Here we report the effect of the 35S promoter sequence on activities of the tissue- and organ-specific gene promoters in tobacco plants. In the absence of the 35S promoter sequence the AAP2 promoter is active only in vascular tissues as indicated by expression of the AAP2:GUS gene. With the 35S promoter sequence in the same T-plasmid, transgenic plants exhibit twofold to fivefold increase in AAP2 promoter activity and the promoter becomes active in all tissue types. Transgenic plants hosting the ovary-specific AGL5:iaaM gene (iaaM coding an auxin biosynthetic gene) showed a wild-type phenotype except production of seedless fruits, whereas plants hosting the AGL5:iaaM gene along with the 35S promoter sequence showed drastic morphological alterations. RT-PCR analysis confirms that the phenotype was caused by activation of the AGL5:iaaM gene in non-ovary organs including roots, stems and flowers. When the pollen-, ovule- and early embryo-specific PAB5:barnase gene (barnase coding a RNase gene) was transformed, the presence of 35S promoter sequence drastically reduced transformation efficiencies. However, the transformation efficiencies were restored in the absence of 35S promoter, indicating that the 35S promoter might activate the expression of PAB5:barnase in non-reproductive organs such as calli and shoot primordia. Furthermore, if the 35S promoter sequence was replaced with the NOS promoter sequence, no alteration in AAP2, AGL5 or PAB5 promoter activities was observed. Our results demonstrate that the 35S promoter sequence can convert an adjacent tissue- and organ-specific gene promoter into a globally active promoter.


Journal of Plant Physiology | 2010

Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis

Yuehua Xiao; Demou Li; Meng-Hui Yin; Xianbi Li; Mi Zhang; Yan-Jun Wang; Jing Dong; Juan Zhao; Ming Luo; Xiaoying Luo; Lei Hou; Lin Hu; Yan Pei

Cotton is the leading natural fiber, and gibberellin (GA) is a phytohormone involved in the development of cotton fibers. However, it is largely unknown how the GA content in ovules and fibers is regulated and how the endogenous GA concentration affects fiber development. To address these questions, three GA 20-oxidase homologous genes (GhGA20ox1-3) were cloned and the endogenous bioactive GA content in developing ovules and fibers determined by liquid chromatography-electrospray ionization-mass spectrometry. Real-time reverse transcription PCR (RT-PCR) revealed that GhGA20ox1 expressed preferentially in elongating fibers and that the expression level varied with the endogenous GA content consistently, while GhGA20ox2 and GhGA20ox3 transcripts accumulated mainly in ovules. The GA accumulation kinetics as well as the GhGA20ox expression differed in ovules and the attached fibers, suggesting relatively independent GA regulation system in these two sites. Transgenic cotton, over-expressing GhGA20ox1, showed GA over-production phenotypes with increased endogenous GA levels (especially GA(4)) in fibers and ovules. It also produced significantly more fiber initials per ovule, and fiber lengths was increased compared with the control, which demonstrates that up-regulation of the GhGA20ox1 gene promoted fiber initiation and elongation. Our results suggest that GA 20-oxidase is involved in fiber development by regulating GA levels, and corresponding genes might be employed as target genes for the manipulation of fiber initiation and elongation in cotton.


Critical Reviews in Plant Sciences | 2004

Invasive Ornamental Plants: Problems, Challenges, and Molecular Tools to Neutralize Their Invasiveness

Yi Li; Zong-Ming Cheng; William Smith; Donna Ellis; Yongqin Chen; Xuelian Zheng; Yan Pei; Keming Luo; Degang Zhao; Quan-Hong Yao; Hui Duan; Qi Li

The spread of invasive plants is one of the most challenging ecological problems in the 21st Century, causing a


Fungal Genetics and Biology | 2012

The MAP kinase Bbslt2 controls growth, conidiation, cell wall integrity, and virulence in the insect pathogenic fungus Beauveria bassiana.

Xingdan Luo; Nemat O. Keyhani; Xiaodong Yu; Zhangjiang He; Zhibing Luo; Yan Pei; Yongjun Zhang

35 billion loss per year to the economy in the United States alone. More than 50% of all invasive plants and 85% of invasive woody species were introduced originally for ornamental and landscape use. Because many nonnative plants are commercially important and widely utilized for various purposes, completely banning their use and prohibiting their imports are unpractical solutions for control. On the other hand, the methods currently used to control the spread of nonnative plants are ineffective, expensive, or environmentally problematic. Recent advances in plant biotechnology may enable us to create sterile cultivars of these nonnative ornamental crops of commercial value. The use of sterile cultivars should reduce or eliminate the undesirable spread of some nonnative invasive plants into natural areas.

Collaboration


Dive into the Yan Pei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Luo

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Lei Hou

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Demou Li

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuelian Zheng

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge