Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yan W. Asmann is active.

Publication


Featured researches published by Yan W. Asmann.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

Jens Lohr; Petar Stojanov; Michael S. Lawrence; Daniel Auclair; Bjoern Chapuy; Carrie Sougnez; Peter Cruz-Gordillo; Birgit Knoechel; Yan W. Asmann; Susan L. Slager; Anne J. Novak; Ahmet Dogan; Stephen M. Ansell; Brian K. Link; Lihua Zou; Joshua Gould; Gordon Saksena; Nicolas Stransky; Claudia Rangel-Escareño; Juan Carlos Fernández-López; Alfredo Hidalgo-Miranda; Jorge Melendez-Zajgla; Enrique Hernández-Lemus; Angela Schwarz-Cruz y Celis; Ivan Imaz-Rosshandler; Akinyemi I. Ojesina; Joonil Jung; Chandra Sekhar Pedamallu; Eric S. Lander; Thomas M. Habermann

To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease.


Science | 2009

A transposon-based genetic screen in mice identifies genes altered in colorectal cancer

Timothy K. Starr; Raha Allaei; Kevin A. T. Silverstein; Rodney Staggs; Aaron L. Sarver; Tracy L. Bergemann; Mihir Gupta; M. Gerard O'Sullivan; Ilze Matise; Adam J. Dupuy; Lara S. Collier; Scott Powers; Ann L. Oberg; Yan W. Asmann; Stephen N. Thibodeau; Lino Tessarollo; Neal G. Copeland; Nancy A. Jenkins; Robert T. Cormier; David A. Largaespada

Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.


Blood | 2012

Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides

Jan B. Egan; Chang Xin Shi; Waibhav Tembe; Alexis Christoforides; Ahmet Kurdoglu; Shripad Sinari; Sumit Middha; Yan W. Asmann; Jessica Schmidt; Esteban Braggio; Jonathan J. Keats; Rafael Fonseca; P. Leif Bergsagel; David Craig; John D. Carpten; A. Keith Stewart

The longitudinal evolution of a myeloma genome from diagnosis to plasma cell leukemia has not previously been reported. We used whole-genome sequencing (WGS) on 4 purified tumor samples and patient germline DNA drawn over a 5-year period in a t(4;14) multiple myeloma patient. Tumor samples were acquired at diagnosis, first relapse, second relapse, and end-stage secondary plasma cell leukemia (sPCL). In addition to the t(4;14), all tumor time points also shared 10 common single-nucleotide variants (SNVs) on WGS comprising shared initiating events. Interestingly, we observed genomic sequence variants that waxed and waned with time in progressive tumors, suggesting the presence of multiple independent, yet related, clones at diagnosis that rose and fell in dominance. Five newly acquired SNVs, including truncating mutations of RB1 and ZKSCAN3, were observed only in the final sPCL sample suggesting leukemic transformation events. This longitudinal WGS characterization of the natural history of a high-risk myeloma patient demonstrated tumor heterogeneity at diagnosis with shifting dominance of tumor clones over time and has also identified potential mutations contributing to myelomagenesis as well as transformation from myeloma to overt extramedullary disease such as sPCL.


Diabetes | 2008

Asian Indians Have Enhanced Skeletal Muscle Mitochondrial Capacity to Produce ATP in Association with Severe Insulin-Resistance

K. Sreekumaran Nair; Maureen L. Bigelow; Yan W. Asmann; Lisa S. Chow; Jill M. Coenen-Schimke; Katherine A. Klaus; Zeng Kui Guo; Raghavakaimal Sreekumar; Brian A. Irving

OBJECTIVE— Type 2 diabetes has become a global epidemic, and Asian Indians have a higher susceptibility to diabetes than Europeans. We investigated whether Indians had any metabolic differences compared with Northern European Americans that may render them more susceptible to diabetes. RESEARCH DESIGN AND METHODS— We studied 13 diabetic Indians, 13 nondiabetic Indians, and 13 nondiabetic Northern European Americans who were matched for age, BMI, and sex. The primary comparisons were insulin sensitivity by hyperinsulinemic-euglycemic clamp and skeletal muscle mitochondrial capacity for oxidative phosphorylation (OXPHOS) by measuring mitochondrial DNA copy number (mtDNA), OXPHOS gene transcripts, citrate synthase activity, and maximal mitochondrial ATP production rate (MAPR). Other factors that may cause insulin resistance were also measured. RESULTS— The glucose infusion rates required to maintain identical glucose levels during the similar insulin infusion rates were substantially lower in diabetic Indians than in the nondiabetic participants (P < 0.001), and they were lower in nondiabetic Indians than in nondiabetic Northern European Americans (P < 0.002). mtDNA (P < 0.02), OXPHOS gene transcripts (P < 0.01), citrate synthase, and MAPR (P < 0.03) were higher in Indians irrespective of their diabetic status. Intramuscular triglyceride, C-reactive protein, interleukin-6, and tumor necrosis factor-α concentrations were higher, whereas adiponectin concentrations were lower in diabetic Indians. CONCLUSIONS— Despite being more insulin resistant, diabetic Indians had similar muscle OXPHOS capacity as nondiabetic Indians, demonstrating that diabetes per se does not cause mitochondrial dysfunction. Indians irrespective of their diabetic status had higher OXPHOS capacity than Northern European Americans, although Indians were substantially more insulin resistant, indicating a dissociation between mitochondrial dysfunction and insulin resistance.


Diabetes | 2006

Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia.

Yan W. Asmann; Craig S. Stump; Kevin R. Short; Jill M. Coenen-Schimke; ZengKui Guo; Maureen L. Bigelow; K. Sreekumaran Nair

We investigated whether previously reported muscle mitochondrial dysfunction and altered gene transcript levels in type 2 diabetes might be secondary to abnormal blood glucose and insulin levels rather than an intrinsic defect of type 2 diabetes. A total of 13 type 2 diabetic and 17 nondiabetic subjects were studied on two separate occasions while maintaining similar insulin and glucose levels in both groups by 7-h infusions of somatostatin, low- or high-dose insulin (0.25 and 1.5 mU/kg of fat-free mass per min, respectively), and glucose. Muscle mitochondrial DNA abundance was not different between type 2 diabetic and nondiabetic subjects at both insulin levels, but the majority of transcripts in muscle that are involved mitochondrial functions were expressed at lower levels in type 2 diabetes at low levels of insulin. However, several gene transcripts that are specifically involved in the electron transport chain were expressed at higher levels in type 2 diabetic patients. After the low-dose insulin infusion, which achieved postabsorptive insulin levels, the muscle mitochondrial ATP production rate (MAPR) was not different between type 2 diabetic and nondiabetic subjects. However, increasing insulin to postprandial levels increased the MAPR in nondiabetic subjects but not in type 2 diabetic patients. The lack of MAPR increment in response to high-dose insulin in type 2 diabetic patients occurred in association with reduced glucose disposal and expression of peroxisome proliferator–activated receptor-γ coactivator 1α, citrate synthase, and cytochrome c oxidase I. In conclusion, the current data supports that muscle mitochondrial dysfunction in type 2 diabetes is not an intrinsic defect, but instead a functional defect related to impaired response to insulin.


PLOS ONE | 2008

A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy

Tohru Nakagawa; Thomas M. Kollmeyer; Bruce W. Morlan; S. Keith Anderson; Eric J. Bergstralh; Brian J. Davis; Yan W. Asmann; George G. Klee; Karla V. Ballman; Robert B. Jenkins

Background Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy. Methodology/Principal Findings A case-control design was used to test the association of gene expression with outcome. Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated–including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84–0.92). Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond 5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped to 8q24 were significantly enriched in the model. Conclusions/Significance Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence.


PLOS Genetics | 2014

Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

Mitesh J. Borad; Mia D. Champion; Jan B. Egan; Winnie S. Liang; Rafael Fonseca; Alan H. Bryce; Ann E. McCullough; Michael T. Barrett; Katherine S. Hunt; Maitray D. Patel; Scott W. Young; Joseph M. Collins; Alvin C. Silva; Rachel M. Condjella; Matthew S. Block; Robert R. McWilliams; Konstantinos N. Lazaridis; Eric W. Klee; Keith C. Bible; Pamela Jo Harris; Gavin R. Oliver; Jaysheel D. Bhavsar; Asha Nair; Sumit Middha; Yan W. Asmann; Jean Pierre A Kocher; Kimberly A. Schahl; Benjamin R. Kipp; Emily G. Barr Fritcher; Angela Baker

Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.


PLOS ONE | 2011

Integrated Analysis of Gene Expression, CpG Island Methylation, and Gene Copy Number in Breast Cancer Cells by Deep Sequencing

Zhifu Sun; Yan W. Asmann; Krishna R. Kalari; Brian M. Bot; Jeanette E. Eckel-Passow; Tiffany R. Baker; Jennifer M. Carr; Irina Khrebtukova; Shujun Luo; Lu Zhang; Gary P. Schroth; Edith A. Perez; E. Aubrey Thompson

We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+) and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A), and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER− cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER− cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5′ end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER− breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.


Blood | 2012

Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas

George Vasmatzis; Sarah H. Johnson; Ryan A. Knudson; Rhett P. Ketterling; Esteban Braggio; Rafael Fonseca; David S. Viswanatha; Mark E. Law; N. Sertac Kip; Nazan Özsan; Stefan K. Grebe; Lori A. Frederick; Bruce W. Eckloff; E. Aubrey Thompson; Marshall E. Kadin; Dragana Milosevic; Julie C. Porcher; Yan W. Asmann; David I. Smith; Irina V. Kovtun; Stephen M. Ansell; Ahmet Dogan; Andrew L. Feldman

Peripheral T-cell lymphomas (PTCLs) are aggressive malignancies of mature T lymphocytes with 5-year overall survival rates of only ∼ 35%. Improvement in outcomes has been stymied by poor understanding of the genetics and molecular pathogenesis of PTCL, with a resulting paucity of molecular targets for therapy. We developed bioinformatic tools to identify chromosomal rearrangements using genome-wide, next-generation sequencing analysis of mate-pair DNA libraries and applied these tools to 16 PTCL patient tissue samples and 6 PTCL cell lines. Thirteen recurrent abnormalities were identified, of which 5 involved p53-related genes (TP53, TP63, CDKN2A, WWOX, and ANKRD11). Among these abnormalities were novel TP63 rearrangements encoding fusion proteins homologous to ΔNp63, a dominant-negative p63 isoform that inhibits the p53 pathway. TP63 rearrangements were seen in 11 (5.8%) of 190 PTCLs and were associated with inferior overall survival; they also were detected in 2 (1.2%) of 164 diffuse large B-cell lymphomas. As TP53 mutations are rare in PTCL compared with other malignancies, our findings suggest that a constellation of alternate genetic abnormalities may contribute to disruption of p53-associated tumor suppressor function in PTCL.


Journal of Clinical Oncology | 2015

Genomic Analysis Reveals That Immune Function Genes Are Strongly Linked to Clinical Outcome in the North Central Cancer Treatment Group N9831 Adjuvant Trastuzumab Trial

Edith A. Perez; E. Aubrey Thompson; Karla V. Ballman; S. Keith Anderson; Yan W. Asmann; Krishna R. Kalari; Jeanette E. Eckel-Passow; Amylou C. Dueck; Kathleen S. Tenner; Jin Jen; Jian Bing Fan; Xochiquetzal J. Geiger; Ann E. McCullough; B. Chen; Robert B. Jenkins; George W. Sledge; Julie R. Gralow; Monica M. Reinholz

PURPOSE To develop a genomic signature that predicts benefit from trastuzumab in human epidermal growth factor receptor 2-positive breast cancer. PATIENTS AND METHODS DASL technology was used to quantify mRNA in samples from 1,282 patients enrolled onto the Combination Chemotherapy With or Without Trastuzumab in Treating Women With Breast Cancer (North Central Cancer Treatment Group N9831 [NCCTG-N9831]) adjuvant trastuzumab trial. Cox proportional hazard ratios (HRs), adjusted for significant clinicopathologic risk factors, were used to determine the association of each gene with relapse-free survival (RFS) for 433 patients who received chemotherapy alone (arm A) and 849 patients who received chemotherapy plus trastuzumab (arms B and C). Network and pathway analyses were used to identify key biologic processes linked to RFS. The signature was built by using a voting scheme. RESULTS Network and functional ontology analyses suggested that increased RFS was linked to a subset of immune function genes. A voting scheme model was used to define immune gene enrichment based on the expression of any nine or more of 14 immune function genes at or above the 0.40 quantile for the population. This model was used to identify immune gene-enriched tumors in arm A and arms B and C. Immune gene enrichment was linked to increased RFS in arms B and C (HR, 0.35; 95% CI, 0.22 to 0.55; P < .001), whereas arm B and C patients who did not exhibit immune gene enrichment did not benefit from trastuzumab (HR, 0.89; 95% CI, 0.62 to 1.28; P = .53). Enriched immune function gene expression as defined by our predictive signature was not associated with increased RFS in arm A (HR, 0.90; 95% CI, 0.60 to 1.37; P = .64). CONCLUSION Increased expression of a subset of immune function genes may provide a means of predicting benefit from adjuvant trastuzumab.

Collaboration


Dive into the Yan W. Asmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge