Yan-Wei Li
South China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yan-Wei Li.
Fish & Shellfish Immunology | 2013
Xue-Ming Dan; Tuan-Wei Zhang; Yan-Wei Li; An-Xing Li
In order to elucidate the immune-protective mechanisms of inactivated Cryptocaryon irritans vaccine, different doses of C. irritans theronts were used to immunize orange-spotted grouper (Epinephelus coioides). We measured serum immobilization titer, blood leukocyte respiratory burst activity, serum alternative complement activity, and serum lysozyme activity weekly. In addition, the expression levels of immune-related genes such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), major histocompatibility complexes I and II (MHC I and II), and transforming growth factor-β1 (TGF-β1) were determined in spleen and gills. The results showed that the immobilization titer, respiratory burst activity, and alternative complement activity of immunized fish were significantly increased, and the levels of the last two immune parameters in the high-dose vaccine group were significantly higher than in the low-dose vaccine group. Serum lysozyme activity in the high-dose vaccine group was significantly higher than in the PBS control group. Vaccination also regulated host immune-related gene expression. For example, at 2- and 3- weeks post immunization, IL-1β expression in the high-dose vaccine group spleen was significantly increased. At 4-weeks post immunization, the fish were challenged with a lethal dose of parasite, and the survival rates of high-dose vaccine group, low-dose vaccine group, PBS control group, and adjuvant control group were 80%, 40%, 0%, and 10% respectively. These results demonstrate that inactivated C. irritans vaccination improves specific and nonspecific immune responses in fish, enhancing their anti-parasite ability. These effects are vaccine antigen dose-dependent.
Fish & Shellfish Immunology | 2013
Fei Zhao; Yan-Wei Li; Houjun Pan; Cun-Bin Shi; Xiao-Chun Luo; An-Xing Li; Shuqin Wu
Toll-like receptors (TLRs) play a crucial role in the innate immune system, but to date the roles of fish TLRs in response to parasitic infection are still poorly understood. In the present study, we used channel catfish (Ictalurus punctatus) and the ciliate parasite Ichthyophthirius multifiliis as a model to investigate whether and which fish TLRs play important roles in the immune response against parasitic pathogens by detecting the expression profiles of a complete set of TLRs in catfish at different time points after infection with I. multifiliis. The expression profiles of TLR1 and TLR2 were similar, and both were significantly up-regulated in the skin and head kidney at most time points after infection. Furthermore, the expression of TLR2 was also up-regulated in the gill and spleen. TLR9 was induced in the skin and gill, whereas TLR21 was induced in the head kidney and spleen after infection. For TLR19, significant up-regulation was observed in the skin and gill, but significant down-regulation was detected in the head kidney and spleen. In contrast to TLR19, TLR25 was significantly up-regulated in the head kidney and spleen at some time points. No significant changes were observed for the rest of the TLRs at most time points. The results indicated that some TLRs may play essential roles in catfish defense against I. multifiliis infection.
Parasite Immunology | 2011
Yan-Wei Li; Xue-Ming Dan; T. W. Zhang; Xiao-Chun Luo; An-Xing Li
Cryptocaryon irritans is one of the most important ectoparasites of marine fish. To identify the potential role of immune‐related genes in antiparasitic immune responses in fish, we monitored the expression change of IL‐8, COX‐2, C‐type lectin and transferrin in local and systemic immune organs of orange‐spotted grouper post‐C. irritans infection. IL‐8 expression was up‐regulated during the course of infection in the skin, while COX‐2 and transferrin expression was up‐regulated in the gill. COX‐2 expression was significantly down‐regulated in the spleen (0·7–5% of its control) and head kidney (0·5–4% of its control) post‐primary infection. Transferrin expression was also down‐regulated in the spleen and head kidney from 6 h to 5 days post‐primary infection. However, C‐type lectin expression was up‐regulated in all tested organs post‐infection, with the exception of day 7 in the spleen post‐primary infection where the expression level was slightly down‐regulated (44% of its control). These results suggest that these four immune‐related genes play an important role in grouper anti‐C. irritans infection and that local immune organs as the active organs contribute more than systemic immune organs to this course.
Developmental and Comparative Immunology | 2014
Yan-Wei Li; Xia Li; Xi-Xi Xiao; Fei Zhao; Xiao-Chun Luo; Xue-Ming Dan; An-Xing Li
Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is a crucial signal transducer in both the TNFR superfamily and Toll-like receptor/interleukin 1R family. Although significant progress has been made in clarifying the role of TRAF6 in mammals, the function of TRAF6 in fish is still poorly understood. In this study, we cloned the orange-spotted grouper (Epinephelus coioides) TRAF6 (EcTRAF6) cDNA, with an open reading frame of 1713bp encoding 570 amino acids. Sequence analysis indicated that EcTRAF6 contains the four characteristic domains conserved in the TRAF family, including an N-terminal RING finger, two zinc fingers, a coiled-coil domain, and a C-terminal MATH domain. Homology alignment and phylogenetic analysis demonstrated that EcTRAF6 shares high sequence identity with TRAF6 of other fish species. The EcTRAF6 gene contains seven exons and six introns, which is similar to the organization in ayu, but not in the common carp, human, or mouse (six exons and five introns). EcTRAF6 transcripts were broadly expressed in all tissues tested, and increased after infection with Cryptocaryon irritans. Intracellular localization showed EcTRAF6 was distributed mainly in the cytoplasm. Over-expression of wild type (WT) EcTRAF6, truncated forms of EcTRAF6, including ΔZinc finger 2 and ΔMATH, and a mutant of C78A activated NF-κB strongly in HEK293T cells; whereas truncations, including ΔRING, ΔZinc finger 1 and Δcoiled-coiled, and a mutant of K132R induced the activity of NF-κB slightly compared to WT EcTRAF6, implying the latter has a more crucial role in downstream signal transduction. Together, these results suggested EcTRAF6 functions like that of mammals to activate NF-κB, and it might have an important role in host defense against parasitic infections.
Journal of Fish Diseases | 2014
L Liu; Yan-Wei Li; Run-Zhen He; Xueshan Xiao; Xiquan Zhang; Y L Su; Jingshu Wang; A X Li
Streptococcus agalactiae, a major pathogen of streptococcosis, can infect a variety of fish species,
Journal of Fish Diseases | 2014
Yan-Wei Li; Li Zhi Liu; P R Huang; W Fang; Z P Luo; H L Peng; Y X Wang; A X Li
1 Key Laboratory for Aquatic Products Safety Department of the Ministry of Education/State Key Laboratory ofBiocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China2 College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China3 Guangdong Provincial Aquatic Animal Epidemic Disease Prevention and Control Center, Guangzhou,Guangdong, China4 Aquaculture Technology Service Station of Zhuhai, Zhuhai, Guangdong, China
Fish & Shellfish Immunology | 2013
Fei Zhao; Yan-Wei Li; Houjun Pan; Shuqin Wu; Cun-Bin Shi; Xiao-Chun Luo; An-Xing Li
Ichthyophthirius multifiliis, a pathogenic ciliate parasite, infects almost all freshwater fish species and causes significant economic losses. Tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β-activated kinase 1 (TAK1) are two important signaling molecules involved in toll-like receptor (TLR) signal transduction. To date, the roles of TRAF6 and TAK1 in host defense against fish parasites are still poorly understood. In the present study, TRAF6 (CiTRAF6) and TAK1 (CiTAK1) were identified from grass carp (Ctenopharyngodon idella). The full-length cDNA sequence of CiTRAF6 (2250 bp) includes an open reading frame (ORF) of 1629 bp, which shows a high similarity to that of Cyprinus carpio TRAF6 and encodes a putative protein of 542 amino acids containing one RING domain, two zinc fingers, one coiled-coil region, and one MATH domain. The full-length CiTAK1 cDNA sequence is 2768 bp and includes an ORF of 1626 bp that encodes a putative protein of 541 amino acids containing a conserved serine/threonine protein kinase catalytic domain and a coiled-coil region. Phylogenetic analysis showed that CiTRAF6 and CiTAK1 were clustered with TRAF6 and TAK1 of other teleosts, respectively. CiTRAF6 and CiTAK1 were both constitutively expressed in all examined tissues but with varied expression levels. The highest expressions of CiTRAF6 and CiTAK1 were in the head kidney and spleen, respectively. The expression profiles of CiTRAF6 and CiTAK1 were detected in grass carp after I. multifiliis infection. Expressions of both genes were significantly up-regulated in the skin, gill, head kidney, and spleen at most time points after infection, indicating that CiTRAF6 and CiTAK1 may play essential roles in grass carp defense against I. multifiliis.
Developmental and Comparative Immunology | 2014
Yan-Wei Li; Xu-Bing Mo; Ling Zhou; Xia Li; Xue-Ming Dan; Xiao-Chun Luo; An-Xing Li
Interleukin 1 (IL-1) receptor-associated kinase (IRAK) family members are crucial signal transducer in the Toll-like receptor/IL-1R signal pathway, which mediates downstream signal cascades involved in the innate and adaptive immune responses. In this study, we identified an IRAK-4 protein (EcIRAK-4) in the orange-spotted grouper (Epinephelus coioides), with an N-terminal death domain, a proST domain, and a central kinase domain, similar to that of other fishes and mammals. A sequence alignment and phylogenic analysis demonstrated that full-length EcIRAK-4 shares a high degree of sequence identity with those of other fishes, especially the roughskin sculpin, and their death domains and kinase domains share greater identity than their proST domains. A conservation analysis indicated that most of the functional sites in mammalian IRAK-4 are conserved in IRAK-4 of the grouper and other fishes, with the exception of the sites of interaction with IRAK-2 and one autophosphorylation site within the activation loop. EcIRAK-4 is broadly expressed in all the tissues examined, with highest expression in the head kidney and liver. After infection with Cryptocaryon irritans, EcIRAK-4 expression was significantly upregulated, especially in the skin, which suggests that this molecule is involved in the hosts defense against parasitic infection. Surprisingly, after cotransfection with grouper MyD88, EcIRAK-4 significantly impaired the NF-κB activity induced by MyD88. EcIRAK-4 was uniformly distributed throughout the cytoplasm in HeLa cells. These findings suggest that although IRAK-4 is evolutionarily conserved between fish and mammals, its signal transduction function is markedly different.
Fish & Shellfish Immunology | 2015
Ze-Quan Mo; Yan-Wei Li; Ling Zhou; An-Xing Li; Xiao-Chun Luo; Xue-Ming Dan
MCSF and its well-known receptor MCSFR had been well studied in humans, regulating the differentiation, proliferation, and survival of the mononuclear phagocyte system. IL-34, which is an alternative ligand of MCSF receptor, was recently identified as a novel cytokine and functionally overlaps with MCSF. However, the functional study of these receptors and their ligands in fish are largely unknown. In the present study, the cDNA of two potential grouper MCSFR ligands have been cloned, EcIL-34 (657 bp) and EcMCSF2 (804 bp), as well as an additional copy of grouper MCSFR, EcMCSFR2 (3141 bp). Sequence analysis showed that these three molecules had higher identities with other fish counterparts compared to mammals and their conserved structures and important functional residues were also analyzed. Tissue distribution analysis showed that EcIL-34 is dominant in brain, gill and spleen compared to EcMCSF2, which is dominant in head kidney, trunk kidney, skin, heart and muscle. EcMCSFR1 was dominant in the most tissues except head kidney and liver compared to EcMCSFR2. The different tissue distribution patterns of these two grouper MCSF receptors and their two ligands indicate the different mononuclear phagocyte differentiation and activation modes in different tissues. In Cryptocaryon irritans infected grouper, EcIL-34 and EcMCSFR2 were the most strongly up-regulated ligand and receptor in the infected sites, gill and skin. Their up-regulation confirmed the proliferation and activation of phagocytes in C. irritans infected sites, which would improve the antigen presentation and elicit the host local specific immune response. In C. irritans infected grouper head kidney, both ligands EcIL-34 and EcMCSF2 (especially EcMCSF2) were up-regulated, but both receptors EcMCSFR1 and EcMCSFR2 were down-regulated, which indicated that the phagocytes differentiation and proliferation may have occurred in this hemopoietic organ, and after that they migrated to the infected cites. The down-regulation of EcIL-34 and EcMCSF2 and no significant change of EcMCSFR1 and EcMCSFR2 in most time point of grouper spleen showed it was less involved in phagocytes response to C. irritans infection.
Parasitology | 2014
Fei Yin; Qiyang Gong; Yan-Wei Li; Xue-Ming Dan; Peng Sun; Quanxin Gao; Zhaohong Shi; Shiming Peng; An-Xing Li
To clarify the effects of a Cryptocaryon irritans infection on the physiological functions of the marbled rockfish Sebastiscus marmoratus, this study utilized C. irritans at concentrations of 2500; 5000; 7500; 10,000; 20,000; and 30,000 theronts/fish to infect marbled rockfish weighing 45 ± 3 g. The survival rate, food intake, respiratory rate, serum ion concentrations and gill Na+/K+-ATPase activity were determined. With the increase of the infection concentration and the passage of time, the survival rate of the rockfish gradually decreased. The groups infected with more than 5000 theronts/fish had stopped feeding within 4 days. The respiratory rates of the fish in the groups infected with 2500 and 5000 theronts/fish initially increased and then decreased. In contrast, the respiratory rate of the fish in the groups infected with more than 7500 theronts/fish was elevated to levels significantly higher than the control group after 12 h. The Na+/K+-ATPase activity and serum Na+ and Cl- concentrations increased with increasing infection concentration. In conclusion, the physiological functions of the fish infected with low concentrations of C. irritans can be effectively restored, whereas a high concentration infection induced severe stress. The declined food intake and accelerated respiratory rate could be useful for an early warning system as important indicators.