Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yan-Yan Wei is active.

Publication


Featured researches published by Yan-Yan Wei.


Brain Behavior and Immunity | 2011

Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain.

Wei Wang; Xiao-Peng Mei; Yan-Yan Wei; Mingming Zhang; Ting Zhang; Wen Wang; Lixian Xu; Sheng-Xi Wu; Yun-Qing Li

Spinal N-methyl d-aspartate receptor (NMDAR) plays a pivotal role in nerve injury-induced central sensitization. Recent studies suggest that NMDAR also contributes to neuron-astrocyte signaling. c-Jun N-terminal kinase (JNK) is persistently and specifically activated (indicated by phosphorylation) in spinal cord astrocytes after nerve injury and thus it is considered as a dependable indicator of pain-related astrocytic activation. NMDAR-mediated JNK activation in spinal dorsal horn might be an important form of neuron-astrocyte signaling in neuropathic pain. In the present study, we observed that intrathecal injection of MK-801, a noncompetitive NMDA receptor antagonist, or Ro25-6981 and ifenprodil, which are selective antagonists of NR2B-containing NMDAR each significantly reduced nerve injury-induced JNK activation. Double immunostaining showed that NR2B was highly expressed in neurons, indicating the effect of NMDAR antagonists on JNK activation was indirect. We further observed that intrathecal injection of NMDA (twice a day for 3 days) significantly increased spinal JNK phosphorylation. Besides, NMDAR-related JNK activation could be blocked by a neuronal nitric oxide synthase (nNOS) selective inhibitor (7-nitroindazole sodium salt) but not by a nNOS sensitive guanylyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). Finally, real-time RT-PCR and immunostaining showed that nerve injury-induced interleukin-1beta expression was dependent on astrocytic JNK activation. Treatments targeting NMDAR-nNOS pathway also influenced interleukin-1beta expression, which further confirmed our hypothesis. Taken together, our results suggest that neuronal NMDAR-nNOS pathway could activate astrocytic JNK pathway. Excitatory neuronal transmission initiates astrocytic activation-induced neuroinflammation in this way, which contributes to nerve injury-induced neuropathic pain.


Journal of Neuroinflammation | 2011

Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK) activation correlates with the analgesic effects of ketamine in neuropathic pain

Xiao-Peng Mei; Hui Zhang; Wei Wang; Yan-Yan Wei; Ming-Zhu Zhai; Wen Wang; Lixian Xu; Yun-Qing Li

BackgroundWe have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL)-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK), a member of mitogen-activated protein kinase (MAPK) family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS)-induced phosphorylated JNK (pJNK) expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation.MethodsImmunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration.ResultsThe present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression.ConclusionsThe present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.


The Journal of Comparative Neurology | 2010

Coexpression of VGLUT1 and VGLUT2 in Trigeminothalamic Projection Neurons in the Principal Sensory Trigeminal Nucleus of the Rat

Shun-Nan Ge; Yunfei Ma; Hiroyuki Hioki; Yan-Yan Wei; Takeshi Kaneko; Noboru Mizuno; Guodong Gao; Jin-Lian Li

VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual‐fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1‐ and VGLUT2‐expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1‐, VGLUT2‐, and VGLUT1/VGLUT2‐expressing ones, remain unsettled. J. Comp. Neurol. 518:3149–3168, 2010.


Journal of Neurochemistry | 2010

Neurochemical properties of enkephalinergic neurons in lumbar spinal dorsal horn revealed by preproenkephalin-green fluorescent protein transgenic mice.

Jing Huang; Jing Chen; Wei Wang; Wen Wang; Yoshinori Koshimizu; Yan-Yan Wei; Takeshi Kaneko; Yun-Qing Li; Sheng-Xi Wu

J. Neurochem. (2010) 113, 1555–1564.


Mitochondrion | 2013

Significant changes in mitochondrial distribution in different pain models of mice

Baolin Guo; Bing-dong Sui; Xue-Ying Wang; Yan-Yan Wei; Jing Huang; Jing Chen; Sheng-Xi Wu; Yun-Qing Li; Ya-Yun Wang; Yan-ling Yang

Mitochondria play an important role in pathophysiology of inflammatory and neuropathic pain but the mechanism is unclear. So far no comprehensive study exists that evaluates the changes of mitochondrial dynamics following the pain. In this study, we detected the mitochondrial distribution and subcellular morphology by using intrathecal injection of mitochondrial marker, Mitotracker Red® CM-H2XRox (Mito-Red) and confocal microscopic analysis in models of formalin-induced acute inflammatory pain, Complete Freunds Adjuvant (CFA)-induced persistent pain and spared nerve injury (SNI)-induced neuropathic pain. The results demonstrated that subcutaneous formalin injection did not affect the number of Mito-Red cells within the spinal dorsal horn at both acute and tonic phases, but significantly increased the number of cluster type mitochondria in superficial spinal dorsal horn (laminas I-II) at tonic phase. Differently, the number of Mito-Red cells significantly increased in superficial and deep spinal dorsal horn (laminas III-V) following persistent CFA and SNI neuropathic pain. Moreover, both CFA and SNI remarkably increased the number of cluster type mitochondria and decreased the number of granule type mitochondria, in both superficial and deep spinal dorsal horn. So we concluded that abnormal mitochondrial distribution contributes to neuropathic and some forms of inflammatory pain.


Frontiers in Neural Circuits | 2014

Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray.

Jun-Bin Yin; Huang-Hui Wu; Yu-Lin Dong; Ting Zhang; Jian Wang; Yong Zhang; Yan-Yan Wei; Ya-Cheng Lu; Sheng-Xi Wu; Wen Wang; Yun-Qing Li

The periaqueductal gray (PAG) modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM) and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF) plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, detailed information is still lacking on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH) and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglia. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral subregion of PAG (vlPAG) than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed the autoreceptor TrkB in addition to serotonin (5-HT), neurotensin (NT), substance P (SP), calcitonin gene related peptide (CGRP), nitric oxide synthase (NOS), and parvalbumin (PV) but not tyrosine decarboxylase (TH). It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs) in the RVM.


Neurochemistry International | 2011

Neurochemical features of enkephalinergic neurons in the mouse trigeminal subnucleus caudalis

Jing Huang; Wei Wang; Jing Chen; Shun-Nan Ge; Yan-Yan Wei; Ya-Yun Wang; Takeshi Kaneko; Yun-Qing Li; Sheng-Xi Wu

Enkephalinergic (ENKergic) neurons have been proposed to play crucial roles in pain modulation in the trigeminal subnucleus caudalis (Vc). To assist an advance in the research of ENKergic neurons, here we used preproenkephalin-green fluorescent protein (PPE-GFP) transgenic mice, in which all ENKergic neurons were fluorescent. We first performed fluorescent in situ hybridization combined with immunofluorescent histochemistry to confirm the specificity of this transgenic mouse and its advantages in showing ENKergic neurons in the Vc. Then based on this useful transgenic mouse, we examined the phenotypic diversity of PPE-GFP neurons by immunostaining for several markers that characterize ENKergic neuron subtypes. About 25.9±1.9% of GFP-positive neurons were regarded as immunoreactive for glutamic acid decarboxylase (GAD)(67) mRNA and 14.7±1.4% of GFP-positive neurons were positive for γ-aminobutyric acid. The proportions of calbindin-, calretinin-positive cells among the ENKergic neurons were 8.4±1.2% and 7.3±1.7%, respectively. Only 1.1±0.1% of GFP-positive neurons colocalized with parvalbumin and no GFP-positive neurons were found to co-express neuronal nitric oxide synthase. We then injected retrograde tracer into the thalamic regions and observed that a small number of ENKergic neurons in the Vc were retrogradely labeled with the tracer. The present results provide a detailed morphological evidence of the neurochemical features of ENKergic neurons. These results have broad implications for understanding the functional roles of ENKergic neurotransmission in the Vc.


PLOS ONE | 2013

Abnormal chloride homeostasis in the substancia nigra pars reticulata contributes to locomotor deficiency in a model of acute liver injury.

Yan-Ling Yang; Jun-Jie Li; Ru Ji; Yan-Yan Wei; Jing Chen; Kefeng Dou; Ya-Yun Wang

Background Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr) in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. Methods Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE). The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. Results In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. Conclusion Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure.


Cells Tissues Organs | 2012

Spatial and Temporal Distribution Patterns of Enkephalinergic Neurons in Adult and Developing Retinas of the Preproenkephalin-Green Fluorescent Protein Transgenic Mouse

Jing Huang; Yan Lin; Rui Han; Jing Chen; Ya-Yun Wang; Wen Wang; Yan-Yan Wei; Takeshi Kaneko; Yun-Qing Li; Sheng-Xi Wu

Enkephalin (ENK) peptides are present in the retina of several vertebrate species and play a crucial role in establishing specific circuits during retinal development. However, there is no information available concerning the development of ENKergic neurons in the mouse retina. To address this question, we used preproenkephalin-enhanced green fluorescent protein (GFP) transgenic mice, in which ENKergic neurons are revealed by GFP. Our results showed that most GFP-positive cells were located in the proximal part of the inner nuclear layer with a scattering of GFP-immunoreactive cells in the ganglion cell layer (GCL) in the adult retina. Double immunostaining with syntaxin indicates that GFP expression was restricted to a population of amacrine cells. The proportions of glycine transporter-1 and γ-aminobutyric acid-positive cells among ENKergic neurons were 57.3 ± 2.4% and 10.1 ± 1.8%, respectively. We then injected retrograde tracer into the superior colliculus and observed that none of the ENKergic neurons in the GCL were retrogradely labeled with the tracer. GFP-positive cells were first observed at embryonic day (E) 15 in the inner neuroblastic layer at only very low levels, which gradually increased until E18. After birth, there was a steep rise in GFP expression levels, reaching maximal activity by postnatal day (P) 7. The distribution and intensity of GFP-positive cells at P15 were similar to those of adult retina. It was found that immunoreactive processes in the inner plexiform layer formed strongly stained patches. The present results provide detailed morphological evidence of the cell type and spatial and temporal distribution of ENKergic neurons in the retina.


Neuroscience Letters | 2013

Mammal retinal distribution of ENKergic amacrine cells and their neurochemical features: evidence from the PPE-GFP transgenic mice.

Jing Chen; Yan Lin; Jing Huang; Wen Wang; Yan-Yan Wei; Yun-Qing Li; Takeshi Kaneko; Sheng-Xi Wu

The neuroactive peptide enkephalin (ENK) has been postulated to play important roles in modulating visual information. The retinal presence of ENKergic cells has been revealed with conventional morphological protocols targeting ENK molecule especially in avian, however, the detailed distribution of ENKergic cells and their specific neurochemical features in the mammal retina remain unclear because of the difficulties in visualizing ENKergic cells efficiently and reliably. To address this question, we took advantage of the preproenkephalin-green fluorescent protein (PPE-GFP) transgenic mice previously generated and identified in our group, and identified the neurochemical characteristics of retinal ENKergic cells. The majority of ENKergic cells occupied the proximal inner nuclear layer with a few displaced in the ganglion cell layer. Further double labeling revealed that most of these ENKergic amacrine cells used inhibitory glycine or gamma-aminobutyric acid as the primary neurotransmitter. However, some of them also utilized excitatory glutamate as the primary neurotransmitter. The present findings suggest that the retinal ENKergic cells fall into a subpopulation of amacrine cells and show predominantly inhibitory as well as less dominantly excitatory neurochemical features. Our findings offered comprehensive morphological evidence for the function of ENKergic amacrine cells of mammal species.

Collaboration


Dive into the Yan-Yan Wei's collaboration.

Top Co-Authors

Avatar

Sheng-Xi Wu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yun-Qing Li

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jing Chen

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jing Huang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Wen Wang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ya-Yun Wang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ya-Cheng Lu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yu-Lin Dong

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge