Yanan Feng
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanan Feng.
Cell | 2003
Kangseok Lee; Xiaoming Zhan; Junjun Gao; Ji Qiu; Yanan Feng; R Meganathan; Stanley N. Cohen; George Georgiou
Ribonuclease E (RNase E) has a key role in mRNA degradation and the processing of catalytic and structural RNAs in E. coli. We report the discovery of an evolutionarily conserved 17.4 kDa protein, here named RraA (regulator of ribonuclease activity A) that binds to RNase E and inhibits RNase E endonucleolytic cleavages without altering cleavage site specificity or interacting detectably with substrate RNAs. Overexpression of RraA circumvents the effects of an autoregulatory mechanism that normally maintains the RNase E cellular level within a narrow range, resulting in the genome-wide accumulation of RNase E-targeted transcripts. While not required for RraA action, the C-terminal RNase E region that serves as a scaffold for formation of a multiprotein degradosome complex modulates the inhibition of RNase E catalytic activity by RraA. Our results reveal a possible mechanism for the dynamic regulation of RNA decay and processing by inhibitory RNase binding proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Yanan Feng; Timothy A. Vickers; Stanley N. Cohen
RNase E, a multifunctional endoribonuclease of Escherichia coli, attacks substrates at highly specific sites. By using synthetic oligoribonucleotides containing repeats of identical target sequences protected from cleavage by 2′-O-methylated nucleotide substitutions at specific positions, we investigated how RNase E identifies its cleavage sites. We found that the RNase E catalytic domain (i.e., N-Rne) binds selectively to 5′-monophosphate RNA termini but has an inherent mode of cleavage in the 3′ to 5′ direction. Target sequences made uncleavable by the introduction of 2′-O-methyl-modified nucleotides bind to RNase E and impede cleavages at normally susceptible sites located 5′ to, but not 3′ to, the protected target. Our results indicate that RNase E can identify cleavage sites by a 3′ to 5′ “scanning” mechanism and imply that anchoring of the enzyme to the 5′-monophosphorylated end of these substrates orients the enzyme for directional cleavages that occur in a processive or quasiprocessive mode. In contrast, we find that RNase G, which has extensive structural homology with and size similarity to N-Rne, and can functionally complement RNase E gene deletions when overexpressed, has a nondirectional and distributive mode of action.
Journal of Biological Chemistry | 2006
Jonathan M. Caruthers; Yanan Feng; David B. McKay; Stanley N. Cohen
Ribonuclease E (RNase E) is a multifunctional endoribonuclease that has been evolutionarily conserved in both Gram-positive and Gram-negative bacteria. X-ray crystallography and biochemical studies have concluded that the Escherichia coli RNase E protein functions as a homotetramer formed by Zn linkage of dimers within a region extending from amino acid residues 416 through 529 of the 116-kDa protein. Using fragments of RNase E proteins from E. coli and Haemophilus influenzae, we show here that RNase E derivatives that are as short as 395 amino acid residues and that lack the Zn-link region shown previously to be essential for tetramer formation (i.e. amino acid residues 400–415) are catalytically active enzymes that retain the 5′ to 3′ scanning ability and cleavage site specificity characteristic of full-length RNase E and that also confer colony forming ability on rne null mutant bacteria. Further truncation leads to loss of these properties. Our results, which identify a minimal catalytically active RNase E sequence, indicate that contrary to current models, a tetrameric quaternary structure is not required for RNase E to carry out its core enzymatic functions.
PLOS Genetics | 2015
Hui-Min Cheng; Yijuang Chern; I-Hui Chen; Chia-Rung Liu; Sih-Huei Li; Seung Chun; Frank Rigo; C. Frank Bennett; Ning Deng; Yanan Feng; Chyuan-Sheng Lin; Yu-Ting Yan; Stanley N. Cohen; Tzu-Hao Cheng
Production of protein containing lengthy stretches of polyglutamine encoded by multiple repeats of the trinucleotide CAG is a hallmark of Huntington’s disease (HD) and of a variety of other inherited degenerative neurological and neuromuscular disorders. Earlier work has shown that interference with production of the transcription elongation protein SUPT4H results in decreased cellular capacity to transcribe mutant huntingtin gene (Htt) alleles containing long CAG expansions, but has little effect on expression of genes containing short CAG stretches. zQ175 and R6/2 are genetically engineered mouse strains whose genomes contain human HTT alleles that include greatly expanded CAG repeats and which are used as animal models for HD. Here we show that reduction of SUPT4H expression in brains of zQ175 mice by intracerebroventricular bolus injection of antisense 2’-O-methoxyethyl oligonucleotides (ASOs) directed against Supt4h, or in R6/2 mice by deletion of one copy of the Supt4h gene, results in a decrease in mRNA and protein encoded specifically by mutant Htt alleles. We further show that reduction of SUPT4H in mouse brains is associated with decreased HTT protein aggregation, and in R6/2 mice, also with prolonged lifespan and delay of the motor impairment that normally develops in these animals. Our findings support the view that targeting of SUPT4H function may be useful as a therapeutic countermeasure against HD.
Journal of Virology | 2006
Annie C. Y. Chang; Laszlo Zsak; Yanan Feng; Ronen Mosseri; Quan Lu; Paul E. Kowalski; Aniko Zsak; Thomas G. Burrage; John G. Neilan; G. F. Kutish; Zhiqiang Lu; Will Laegreid; D. L. Rock; Stanley N. Cohen
ABSTRACT African swine fever virus (ASFV) produces a fatal acute hemorrhagic fever in domesticated pigs that potentially is a worldwide economic threat. Using an expressed sequence tag (EST) library-based antisense method of random gene inactivation and a phenotypic screen for limitation of ASFV replication in cultured human cells, we identified six host genes whose cellular functions are required by ASFV. These included three loci, BAT3 (HLA-B-associated transcript 3), C1qTNF (C1q and tumor necrosis factor-related protein 6), and TOM40 (translocase of outer mitochondrial membrane 40), for which antisense expression from a tetracycline-regulated promoter resulted in reversible inhibition of ASFV production by >99%. The effects of antisense transcription of the BAT3 EST and also of expression in the sense orientation of this EST, which encodes amino acid residues 450 to 518 of the mature BAT3 protein, were investigated more extensively. Sense expression of the BAT3 peptide, which appears to reversibly interfere with BAT3 function by a dominant negative mechanism, resulted in decreased synthesis of viral DNA and proteins early after ASFV infection, altered transcription of apoptosis-related genes as determined by cDNA microarray analysis, and increased cellular sensitivity to staurosporine-induced apoptosis. Antisense transcription of BAT3 reduced ASFV production without affecting abundance of the virus macromolecules we assayed. Our results, which demonstrate the utility of EST-based functional screens for the detection of host genes exploited by pathogenic viruses, reveal a novel collection of cellular genes previously not known to be required for ASFV infection.
Infection and Immunity | 2013
Yanan Feng; Stanley N. Cohen
ABSTRACT Pseudomembranous enterocolitis associated with Clostridium difficile infection is an important cause of morbidity and mortality in patients being treated with antibiotics. Two closely related large protein toxins produced by C. difficile, TcdA and TcdB, which act identically but at different efficiencies to glucosylate low-molecular-weight Rho GTPases, underlie the microbes pathogenicity. Using antisense RNA encoded by a library of human expressed sequence tags (ESTs), we randomly inactivated host chromosomal genes in HeLa cells and isolated clones that survived exposure to ordinarily lethal doses of TcdB. This phenotypic screening and subsequent analysis identified solute carrier family 11 member 1 (SLC11A1; formerly NRAMP1), a divalent cation transporter crucial to host defense against certain microbes, as an enhancer of TcdB lethality. Whereas SLC11A1 normally is poorly expressed in human cells of nonmyeloid lineage, TcdB increased SLC11A1 mRNA abundance in such cells through the actions of the RNA-binding protein HuR. We show that short hairpin RNA (shRNA) directed against SLC11A1 reduced TcdB glucosylation of small Rho GTPases and, consequently, toxin lethality. Consistent with the previously known role of SLC11A1 in cation transport, these effects were enhanced by elevation of Mn2+ in media; conversely, they were decreased by treatment with a chelator of divalent cations. Our findings reveal an unsuspected role for SLC11A1 in determining C. difficile pathogenicity, demonstrate the novel ability of a bacterial toxin to increase its cytotoxicity, establish a mechanistic basis for these effects, and suggest a therapeutic approach to mitigate cell killing by C. difficile toxins A and B.
Journal of Biological Chemistry | 2001
Yanan Feng; Hongjin Huang; Jian Liao; Stanley N. Cohen
Proceedings of the National Academy of Sciences of the United States of America | 2000
Yanan Feng; Stanley N. Cohen
Archive | 2007
Stanley N. Cohen; Daniel Rock; Annie Chang; Yanan Feng; Laszlo Zsak; Maria E. Piccone