Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanbin Yin is active.

Publication


Featured researches published by Yanbin Yin.


Nucleic Acids Research | 2012

dbCAN: a web resource for automated carbohydrate-active enzyme annotation

Yanbin Yin; Xizeng Mao; Jincai Yang; Xin Chen; Fenglou Mao; Ying Xu

Carbohydrate-active enzymes (CAZymes) are very important to the biotech industry, particularly the emerging biofuel industry because CAZymes are responsible for the synthesis, degradation and modification of all the carbohydrates on Earth. We have developed a web resource, dbCAN (http://csbl.bmb.uga.edu/dbCAN/annotate.php), to provide a capability for automated CAZyme signature domain-based annotation for any given protein data set (e.g. proteins from a newly sequenced genome) submitted to our server. To accomplish this, we have explicitly defined a signature domain for every CAZyme family, derived based on the CDD (conserved domain database) search and literature curation. We have also constructed a hidden Markov model to represent the signature domain of each CAZyme family. These CAZyme family-specific HMMs are our key contribution and the foundation for the automated CAZyme annotation.


The Plant Cell | 2013

LACCASE Is Necessary and Nonredundant with PEROXIDASE for Lignin Polymerization during Vascular Development in Arabidopsis

Qiao Zhao; Jin Nakashima; Fang Chen; Yanbin Yin; Chunxiang Fu; Jianfei Yun; Hui Shao; Xiaoqiang Wang; Zeng-Yu Wang; Richard A. Dixon

Laccases and peroxidases are encoded by large gene families in plants, and both enzymes have been implicated in the polymerization of monolignols during lignification. Loss of function of three LACCASE genes in Arabidopsis essentially eliminates lignification in root and stem tissue, in the absence of reductions in peroxidase transcripts, indicating that laccase is essential for lignification. The evolution of lignin biosynthesis was critical in the transition of plants from an aquatic to an upright terrestrial lifestyle. Lignin is assembled by oxidative polymerization of two major monomers, coniferyl alcohol and sinapyl alcohol. Although two recently discovered laccases, LAC4 and LAC17, have been shown to play a role in lignin polymerization in Arabidopsis thaliana, disruption of both genes only leads to a relatively small change in lignin content and only under continuous illumination. Simultaneous disruption of LAC11 along with LAC4 and LAC17 causes severe plant growth arrest, narrower root diameter, indehiscent anthers, and vascular development arrest with lack of lignification. Genome-wide transcript analysis revealed that all the putative lignin peroxidase genes are expressed at normal levels or even higher in the laccase triple mutant, suggesting that lignin laccase activity is necessary and nonredundant with peroxidase activity for monolignol polymerization during plant vascular development. Interestingly, even though lignin deposition in roots is almost completely abolished in the lac11 lac4 lac17 triple mutant, the Casparian strip, which is lignified through the activity of peroxidase, is still functional. Phylogenetic analysis revealed that lignin laccase genes have no orthologs in lower plant species, suggesting that the monolignol laccase genes diverged after the evolution of seed plants.


Nucleic Acids Research | 2004

SPD—a web-based secreted protein database

Yunjia Chen; Yong Zhang; Yanbin Yin; Songgang Li; Ying Jiang; Xiaocheng Gu; Jingchu Luo

With the improved secreted protein prediction approach and comprehensive data sources, including Swiss-Prot, TrEMBL, RefSeq, Ensembl and CBI-Gene, we have constructed secretomes of human, mouse and rat, with a total of 18 152 secreted proteins. All the entries are ranked according to the prediction confidence. They were further annotated via a proteome annotation pipeline that we developed. We also set up a secreted protein classification pipeline and classified our predicted secreted proteins into different functional categories. To make the dataset more convincing and comprehensive, nine reference datasets are also integrated, such as the secreted proteins from the Gene Ontology Annotation (GOA) system at the European Bioinformatics Institute, and the vertebrate secreted proteins from Swiss-Prot. All these entries were grouped via a TribeMCL based clustering pipeline. We have constructed a web-based secreted protein database, which has been publicly available at http://spd.cbi.pku.edu.cn. Users can browse the database via a GO assignment or chromosomal-location-based interface. Moreover, text query and sequence similarity search are also provided, and the sequence and annotation data can be downloaded freely from the SPD website.


Nucleic Acids Research | 2011

Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725

Phuongan Dam; Irina Kataeva; Sung-Jae Yang; Fengfeng Zhou; Yanbin Yin; Wen-Chi Chou; Farris L. Poole; Janet Westpheling; Robert L. Hettich; Richard J. Giannone; Derrick L. Lewis; Robert M. Kelly; Harry J. Gilbert; Bernard Henrissat; Ying Xu; Michael W. W. Adams

Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼80°C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments.


Bioenergy Research | 2009

A Bioinformatic Analysis of NAC Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production

Hui Shen; Yanbin Yin; Fang Chen; Ying Xu; Richard A. Dixon

NAM, ATAF, and CUC2 (NAC) proteins are encoded by one of the largest plant-specific transcription factor gene families. The functions of many NAC proteins relate to different aspects of lignocellulosic biomass production, and a small group of NAC transcription factors has been characterized as master regulators of plant cell wall development. In the present study, a total of 1,232 NAC protein sequences from 11 different organisms were analyzed by sequence phylogeny based on protein DNA-binding domains. We included eight whole genomes (Arabidopsis, rice, poplar, grape, sorghum, soybean, moss (Physcomitrella patens), and spike moss (Selaginella moellendorffii)) and three not yet fully sequenced genomes (maize, switchgrass, and Medicago truncatula) in our analyses. Ninety-two potential PvNAC genes from switchgrass and 148 PtNAC genes from poplar were identified. The 1,232 NAC proteins were phylogenetically classified into eight subfamilies, each of which was further divided into subgroups according to their tree topology. The phylogenetic subgroups were then grouped into different clades each sharing conserved motif patterns in the C-terminal sequences, and those that may function in plant cell wall development were further identified through motif grouping and gene expression pattern analysis using publicly available microarray data. Our results provide a bioinformatic baseline for further functional analyses of candidate NAC genes for improving cell wall and environmental tolerance traits in the bioenergy crops switchgrass and poplar.


BMC Plant Biology | 2009

The cellulose synthase superfamily in fully sequenced plants and algae

Yanbin Yin; Jinling Huang; Ying Xu

BackgroundThe cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses.ResultsA single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome.ConclusionOur data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch

Qiao Zhao; Huanzhong Wang; Yanbin Yin; Ying Xu; Fang Chen; Richard A. Dixon

Lignin is a major component of plant secondary cell walls and is derived from p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monolignols. Among higher plants, S lignin is generally considered to be restricted to angiosperms, which contain the S lignin-specific cytochrome P450-dependent monooxygenase, ferulic acid/coniferaldehyde/coniferyl alcohol 5-hydoxylase (F5H). The transcription factor MYB58 directly regulates expression of monolignol pathway genes except for F5H. Here we show that F5H expression is directly regulated by the secondary cell wall master switch NST1/SND1, which is known to regulate expression of MYB58. Deletion of NST1 expression in Medicago truncatula leads to a loss of S lignin associated with a more than 25-fold reduction of F5H expression but only around a 2-fold reduction in expression of other lignin pathway genes. A detailed phylogenetic analysis showed that gymnosperms lack both F5H and orthologs of NST1/SND1. We propose that both F5H and NST1 appeared at a similar time after the divergence of angiosperms and gymnosperms, with F5H possibly originating as a component of a defense mechanism that was recruited to cell wall biosynthesis through the evolution of NST1-binding elements in its promoter.


Plant Physiology | 2010

Evolution and Function of the Plant Cell Wall Synthesis-Related Glycosyltransferase Family 8

Yanbin Yin; Huiling Chen; Michael G. Hahn; Debra Mohnen; Ying Xu

Carbohydrate-active enzyme glycosyltransferase family 8 (GT8) includes the plant galacturonosyltransferase1-related gene family of proven and putative α-galacturonosyltransferase (GAUT) and GAUT-like (GATL) genes. We computationally identified and investigated this family in 15 fully sequenced plant and green algal genomes and in the National Center for Biotechnology Information nonredundant protein database to determine the phylogenetic relatedness of the GAUTs and GATLs to other GT8 family members. The GT8 proteins fall into three well-delineated major classes. In addition to GAUTs and GATLs, known or predicted to be involved in plant cell wall biosynthesis, class I also includes a lower plant-specific GAUT and GATL-related (GATR) subfamily, two metazoan subfamilies, and proteins from other eukaryotes and cyanobacteria. Class II includes galactinol synthases and plant glycogenin-like starch initiation proteins that are not known to be directly involved in cell wall synthesis, as well as proteins from fungi, metazoans, viruses, and bacteria. Class III consists almost entirely of bacterial proteins that are lipooligo/polysaccharide α-galactosyltransferases and α-glucosyltransferases. Sequence motifs conserved across all GT8 subfamilies and those specific to plant cell wall-related GT8 subfamilies were identified and mapped onto a predicted GAUT1 protein structure. The tertiary structure prediction identified sequence motifs likely to represent key amino acids involved in catalysis, substrate binding, protein-protein interactions, and structural elements required for GAUT1 function. The results show that the GAUTs, GATLs, and GATRs have a different evolutionary origin than other plant GT8 genes, were likely acquired from an ancient cyanobacterium (Synechococcus) progenitor, and separate into unique subclades that may indicate functional specialization.


New Phytologist | 2010

Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties

Luis L. Escamilla-Treviño; Hui Shen; Srinivasa Rao Uppalapati; Tui Ray; Yuhong Tang; Timothy Hernandez; Yanbin Yin; Ying Xu; Richard A. Dixon

The down-regulation of enzymes of the monolignol pathway results in reduced recalcitrance of biomass for lignocellulosic ethanol production. Cinnamoyl CoA reductase (CCR) catalyzes the first step of the phenylpropanoid pathway specifically dedicated to monolignol biosynthesis. However, plants contain multiple CCR-like genes, complicating the selection of lignin-specific targets. This study was undertaken to understand the complexity of the CCR gene family in tetraploid switchgrass (Panicum virgatum) and to determine the biochemical properties of the encoded proteins. Four switchgrass cDNAs (most with multiple variants) encoding putative CCRs were identified by phylogenetic analysis, heterologously expressed in Escherichia coli, and the corresponding enzymes were characterized biochemically. Two cDNAs, PvCCR1 and PvCCR2, encoded enzymes with CCR activity. They are phylogenetically distinct, differentially expressed, and the corresponding enzymes exhibited different biochemical properties with regard to substrate preference. PvCCR1 has higher specific activity and prefers feruloyl CoA as substrate, whereas PvCCR2 prefers caffeoyl and 4-coumaroyl CoAs. Allelic variants of each cDNA were detected, but the two most diverse variants of PvCCR1 encoded enzymes with similar catalytic activity. Based on its properties and expression pattern, PvCCR1 is probably associated with lignin biosynthesis during plant development (and is therefore a target for the engineering of improved biomass), whereas PvCCR2 may function in defense.


Journal of Bacteriology | 2012

Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass

Sara E. Blumer-Schuette; Richard J. Giannone; Jeffrey V. Zurawski; Inci Ozdemir; Qin Ma; Yanbin Yin; Ying Xu; Irena Kataeva; Farris L. Poole; Michael W. W. Adams; Scott D. Hamilton-Brehm; James G. Elkins; Frank W. Larimer; Miriam Land; Loren Hauser; Robert W. Cottingham; Robert L. Hettich; Robert M. Kelly

Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose.

Collaboration


Dive into the Yanbin Yin's collaboration.

Top Co-Authors

Avatar

Ying Xu

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qin Ma

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Phuongan Dam

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge