Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanbo Fan is active.

Publication


Featured researches published by Yanbo Fan.


Nature Genetics | 2014

Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk.

Oddgeir L. Holmen; He-Ming Zhang; Yanbo Fan; Daniel H. Hovelson; Ellen M. Schmidt; Wei-Wei Zhou; Yanhong Guo; Ji Zhang; Arnulf Langhammer; Maja-Lisa Løchen; Santhi K. Ganesh; Lars J. Vatten; Frank Skorpen; Håvard Dalen; Jifeng Zhang; Subramaniam Pennathur; Jin-jin Chen; Carl Platou; Ellisiv B. Mathiesen; Tom Wilsgaard; Inger Njølstad; Michael Boehnke; Y. Eugene Chen; Gonçalo R. Abecasis; Kristian Hveem; Cristen J. Willer

Blood lipid levels are heritable, treatable risk factors for cardiovascular disease. We systematically assessed genome-wide coding variation to identify new genes influencing lipid traits, fine map known lipid loci and evaluate whether low-frequency variants with large effects exist for these traits. Using an exome array, we genotyped 80,137 coding variants in 5,643 Norwegians. We followed up 18 variants in 4,666 Norwegians and identified ten loci with coding variants associated with a lipid trait (P < 5 × 10−8). One variant in TM6SF2 (encoding p.Glu167Lys), residing in a known genome-wide association study locus for lipid traits, influences total cholesterol levels and is associated with myocardial infarction. Transient TM6SF2 overexpression or knockdown of Tm6sf2 in mice alters serum lipid profiles, consistent with the association observed in humans, identifying TM6SF2 as a functional gene within a locus previously known as NCAN-CILP2-PBX4 or 19p13. This study demonstrates that systematic assessment of coding variation can quickly point to a candidate causal gene.


Brain | 2013

KLF11 mediates PPARγ cerebrovascular protection in ischaemic stroke

Ke-Jie Yin; Yanbo Fan; Milton Hamblin; Jifeng Zhang; Tainqing Zhu; Siming Li; John R. Hawse; Malayannan Subramaniam; Chao Zhong Song; Raul Urrutia; Jiandie D. Lin; Y. Eugene Chen

Peroxisome proliferator-activated receptor gamma (PPARγ) is emerging as a major regulator in neurological diseases. However, the role of (PPARγ) and its co-regulators in cerebrovascular endothelial dysfunction after stroke is unclear. Here, we have demonstrated that (PPARγ) activation by pioglitazone significantly inhibited both oxygen-glucose deprivation-induced cerebral vascular endothelial cell death and middle cerebral artery occlusion-triggered cerebrovascular damage. Consistent with this finding, selective (PPARγ) genetic deletion in vascular endothelial cells resulted in increased cerebrovascular permeability and brain infarction in mice after focal ischaemia. Moreover, we screened for (PPARγ) co-regulators using a genome-wide and high-throughput co-activation system and revealed KLF11 as a novel (PPARγ) co-regulator, which interacted with (PPARγ) and regulated its function in mouse cerebral vascular endothelial cell cultures. Interestingly, KLF11 was also found as a direct transcriptional target of (PPARγ). Furthermore, KLF11 genetic deficiency effectively abolished pioglitazone cytoprotection in mouse cerebral vascular endothelial cell cultures after oxygen-glucose deprivation, as well as pioglitazone-mediated cerebrovascular protection in a mouse middle cerebral artery occlusion model. Mechanistically, we demonstrated that KLF11 enhanced (PPARγ) transcriptional suppression of the pro-apoptotic microRNA-15a (miR-15a) gene, resulting in endothelial protection in cerebral vascular endothelial cell cultures and cerebral microvasculature after ischaemic stimuli. Taken together, our data demonstrate that recruitment of KLF11 as a novel (PPARγ) co-regulator plays a critical role in the cerebrovascular protection after ischaemic insults. It is anticipated that elucidating the coordinated actions of KLF11 and (PPARγ) will provide new insights into understanding the molecular mechanisms underlying (PPARγ) function in the cerebral vasculature and help to develop a novel therapeutic strategy for the treatment of stroke.


Journal of Clinical Investigation | 2015

Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production

Yanhong Guo; Yanbo Fan; Jifeng Zhang; Gwen Lomberk; Zhou Zhou; Lijie Sun; Angela Mathison; Minerva T. Garcia-Barrio; Ji Zhang; Lixia Zeng; Lei Li; Subramaniam Pennathur; Cristen J. Willer; Daniel J. Rader; Raul Urrutia; Y. Eugene Chen

Recent genome-wide association studies have revealed that variations near the gene locus encoding the transcription factor Krüppel-like factor 14 (KLF14) are strongly associated with HDL cholesterol (HDL-C) levels, metabolic syndrome, and coronary heart disease. However, the precise mechanisms by which KLF14 regulates lipid metabolism and affects atherosclerosis remain largely unexplored. Here, we report that KLF14 is dysregulated in the liver of 2 dyslipidemia mouse models. We evaluated the effects of both KLF14 overexpression and genetic inactivation and determined that KLF14 regulates plasma HDL-C levels and cholesterol efflux capacity by modulating hepatic ApoA-I production. Hepatic-specific Klf14 deletion in mice resulted in decreased circulating HDL-C levels. In an attempt to pharmacologically target KLF14 as an experimental therapeutic approach, we identified perhexiline, an approved therapeutic small molecule presently in clinical use to treat angina and heart failure, as a KLF14 activator. Indeed, in WT mice, treatment with perhexiline increased HDL-C levels and cholesterol efflux capacity via KLF14-mediated upregulation of ApoA-I expression. Moreover, perhexiline administration reduced atherosclerotic lesion development in apolipoprotein E-deficient mice. Together, these results provide comprehensive insight into the KLF14-dependent regulation of HDL-C and subsequent atherosclerosis and indicate that interventions that target the KLF14 pathway should be further explored for the treatment of atherosclerosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Krüppel-Like Factor-11, a Transcription Factor Involved in Diabetes Mellitus, Suppresses Endothelial Cell Activation via the Nuclear Factor-κB Signaling Pathway

Yanbo Fan; Yanhong Guo; Jifeng Zhang; Malayannan Subramaniam; Chao Zhong Song; Raul Urrutia; Y. Eugene Chen

Objective—Endothelial cell (EC) inflammatory status is critical to many vascular diseases. Emerging data demonstrate that mutations of Krüppel-like factor-11 (KLF11), a gene coding maturity-onset diabetes mellitus of the young type 7 (MODY7), contribute to the development of neonatal diabetes mellitus. However, the function of KLF11 in the cardiovascular system still remains to be uncovered. In this study, we aimed to investigate the role of KLF11 in vascular endothelial inflammation. Methods and Results—KLF11 is highly expressed in vascular ECs and induced by proinflammatory stimuli. Adenovirus-mediated KLF11 overexpression inhibits expression of tumor necrosis factors-&agr;–induced adhesion molecules. Moreover, small interfering RNA–mediated KLF11 knockdown augments the proinflammatory status in ECs. KLF11 inhibits promoter activity of adhesion molecules induced by tumor necrosis factor-&agr; and nuclear factor-&kgr;B p65 overexpression. Mechanistically, KLF11 potently inhibits nuclear factor-&kgr;B signaling pathway via physical interaction with p65. Furthermore, KLF11 knockdown results in increased binding of p65 to vascular cell adhesion molecule-1 and E-selectin promoters. At the whole organism level, KLF11−/− mice exhibit a significant increase in leukocyte recruitment to ECs after lipopolysaccharide administration. Conclusion—Taken together, our data demonstrate for the first time that KLF11 is a suppressor of EC inflammatory activation, suggesting that KLF11 constitutes a novel potential molecular target for inhibition of vascular inflammatory diseases.


Biochemical Journal | 2013

Zc3h12c inhibits vascular inflammation by repressing NF-κB activation and pro-inflammatory gene expression in endothelial cells

Ling Liu; Zhou Zhou; Shengping Huang; Yanhong Guo; Yanbo Fan; Ji Zhang; Jifeng Zhang; Mingui Fu; Y. Eugene Chen

Endothelial activation characterized by the expression of multiple chemokines and adhesive molecules is a critical initial step of vascular inflammation, which results in recruitment of leucocytes into the sub-endothelial layer of the vascular wall and triggers vascular inflammatory diseases such as atherosclerosis. Although inhibiting endothelial inflammation has already been well recognized as a therapeutic strategy in vascular inflammatory diseases, the therapeutic targets are still elusive. In the present study we found that Zc3h12c (zinc finger CCCH-type-containing 12C), a recently discovered CCCH zinc finger-containing protein, significantly inhibited the endothelial cell inflammatory response in vitro. Overexpression of Zc3h12c significantly attenuated TNFα (tumour necrosis factor α)-induced expression of chemokines and adhesive molecules, and thus reduced monocyte adherence to HUVECs (human umbilical vein endothelial cells). Conversely, siRNA (small interfering RNA)-mediated knockdown of Zc3h12c increased the TNFα-induced expression of chemokines and adhesive molecules in HUVECs. Furthermore, forced expression of Zc3h12c decreased TNFα-induced IKKα/β [IκB (inhibitor of nuclear factor κB) kinase α/β], IκBα phosphorylation and p65 nuclear translocation, suggesting that Zc3h12c exerted its anti-inflammatory function probably by suppressing the NF-κB (nuclear factor κB) pathway. Thus Zc3h12c is an endogenous inhibitor of TNFα-induced inflammatory signalling in HUVECs and might be a therapeutic target in vascular inflammatory diseases.


Gastroenterology | 2016

Hepatic Transmembrane 6 Superfamily Member 2 Regulates Cholesterol Metabolism in Mice.

Yanbo Fan; Haocheng Lu; Yanhong Guo; Tianqing Zhu; Minerva T. Garcia-Barrio; Zhisheng Jiang; Cristen J. Willer; Jifeng Zhang; Y. Eugene Chen

BACKGROUND & AIMS The rs58542926 C>T variant of the transmembrane 6 superfamily member 2 gene (TM6SF2), encoding an E167K amino acid substitution, has been correlated with reduced total cholesterol (TC) and cardiovascular disease. However, little is known about the role of TM6SF2 in metabolism. We investigated the long-term effects of altered TM6SF2 levels in cholesterol metabolism. METHODS C57BL/6 mice (controls), mice that expressed TM6SF2 specifically in the liver, and mice with CRISPR/Cas9-mediated knockout of Tm6sf2 were fed chow or high-fat diets. Blood samples were collected from all mice and plasma levels of TC, low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol, and triglycerides were measured. Liver tissues were collected and analyzed by histology, real-time polymerase chain reaction, and immunoblot assays. Adenovirus vectors were used to express transgenes in cultured Hep3B hepatocytes. RESULTS Liver-specific expression of TM6SF2 increased plasma levels of TC and LDL-c, compared with controls, and altered liver expression of genes that regulate cholesterol metabolism. Tm6sf2-knockout mice had decreased plasma levels of TC and LDL-c, compared with controls, and consistent changes in expression of genes that regulate cholesterol metabolism. Expression of TM6SF2 promoted cholesterol biosynthesis in hepatocytes. CONCLUSIONS TM6SF2 regulates cholesterol metabolism in mice and might be a therapeutic target for cardiovascular disease.


Journal of Visualized Experiments | 2013

Production of Apolipoprotein C-III Knockout Rabbits using Zinc Finger Nucleases

Dongshan Yang; Jifeng Zhang; Jie Xu; Tianqing Zhu; Yanbo Fan; Jianglin Fan; Y. Eugene Chen

Apolipoprotein (Apo) C-III (ApoCIII) resides on the surface of plasma chylomicron (CM), very low density lipoprotein (VLDL) and high density lipoproteins (HDL). It has been recognized that high levels of plasma ApoCIII constitutea risk factor for cardiovascular diseases (CVD). Elevated plasma ApoCIII level often correlates with insulin resistance, obesity, and hypertriglyceridemia. Invaluable knowledge on the roles of ApoCIIIin lipid metabolisms and CVD has been obtained from transgenic mouse models including ApoCIII knockout (KO) mice; however, it is noted that the metabolism of lipoprotein in mice is different from that of humans in many aspects. It is not known until now whether elevated plasma ApoCIII is directly atherogenic. We worked to develop ApoCIII KO rabbits in the present study based on the hypothesis that rabbits can serve as a reasonablemodelfor studying human lipid metabolism and atherosclerosis. Zinc finger nuclease (ZFN) sets targeting rabbit ApoCIIIgene were subjected to in vitro validation prior to embryo microinjection. The mRNA was injected to the cytoplasm of 35 rabbit pronuclear stage embryos, and evaluated the mutation rates at the blastocyst state. Of sixteen blastocysts that were assayed, a satisfactory 50% mutation rate (8/16) at the targeting site was achieved, supporting the use of Set 1 for in vivo experiments. Next, we microinjected 145 embryos with Set 1 mRNA, and transferred these embryos to 7 recipient rabbits. After 30 days gestation, 21 kits were born, out of which five were confirmed as ApoCIII KO rabbits after PCR sequencing assays. The KO animal rate (#KO kits/total born) was 23.8%. The overall production efficiency is 3.4% (5 kits/145 embryos transferred). The present work demonstrated that ZFN is a highly efficient method to produce KO rabbits. These ApoCIII KO rabbits are novel resources to study the roles of ApoCIII in lipid metabolisms.


Science Signaling | 2017

TFEB inhibits endothelial cell inflammation and reduces atherosclerosis.

Haocheng Lu; Yanbo Fan; Congzhen Qiao; Wenying Liang; Wenting Hu; Tianqing Zhu; Jifeng Zhang; Y. Eugene Chen

TFEB suppresses oxidative stress and inflammation in endothelial cells to decrease atherosclerosis. Protected from atherosclerosis by TFEB Atherosclerosis, or the buildup of fatty plaques in blood vessels, can lead to high blood pressure and heart attacks. Lu et al. found that, in cultured endothelial cells, the transcription factor TFEB reduced oxidative stress and inflammation, two processes thought to contribute to the development of atherosclerosis. When fed a high-fat diet, mice that overexpressed TFEB in endothelial cells developed smaller atherosclerotic lesions than their control littermates on the same diet. Thus, treatments that enhance the activity of TFEB in endothelial cells could reduce the development of atherosclerosis. Furthermore, because the anti-inflammatory effect of TFEB in endothelial cells was independent of its role in autophagy, a process in which cells digest macromolecules and organelles, these results highlight new roles for this transcription factor. Transcription factor EB (TFEB) is a master regulator of autophagy and lysosome biogenesis. We investigated the function of TFEB in vascular biology and pathophysiology and demonstrated that TFEB in endothelial cells inhibited inflammation and reduced atherosclerosis development. Laminar shear stress, which protects against atherosclerosis, increased TFEB abundance in cultured primary human endothelial cells. Furthermore, TFEB overexpression in these cells was anti-inflammatory, whereas TFEB knockdown aggravated inflammation. The anti-inflammatory effect of TFEB was, at least, partially due to reduced oxidative stress because TFEB overexpression in endothelial cells decreased the concentrations of reactive oxygen species and increased the expression of the antioxidant genes HO1 (which encodes heme oxygenase 1) and SOD2 (which encodes superoxide dismutase 2). In addition, transgenic mice with endothelial cell–specific expression of TFEB exhibited reduced leukocyte recruitment to endothelial cells and decreased atherosclerosis development. Our study suggests that TFEB is a protective transcription factor against endothelial cell inflammation and a potential target for treating atherosclerosis and associated cardiovascular diseases.


Journal of Biological Chemistry | 2011

Inhibition of Gluconeogenic Genes by Calcium-regulated Heat-stable Protein 1 via Repression of Peroxisome Proliferator-activated Receptor α

Yanbo Fan; Yanhong Guo; Milton Hamblin; Lin Chang; Jifeng Zhang; Y. Eugene Chen

Background: Gluconeogenesis contributes to insulin resistance in type 1 and type 2 diabetes, but underlying molecular mechanisms remain unclear. Results: CARHSP1 functions at the transcriptional level to negatively regulate gluconeogenic genes in the liver. Conclusion: CARHSP1 inhibits hepatic gluconeogenic gene expression via repression of PPARα. Significance: CARHSP1 is a negative regulator of hepatic gluconeogenesis and a potential molecular target for the treatment of diabetes. Gluconeogenesis contributes to insulin resistance in type 1 and type 2 diabetes, but its regulation and the underlying molecular mechanisms remain unclear. Recently, calcium-regulated heat-stable protein 1 (CARHSP1) was identified as a biomarker for diabetic complications. In this study, we investigated the role of CARHSP1 in hepatic gluconeogenesis. We assessed the regulation of hepatic CARHSP1 expression under conditions of fasting and refeeding. Adenovirus-mediated CARHSP1 overexpression and siRNA-mediated knockdown experiments were performed to characterize the role of CARHSP1 in the regulation of gluconeogenic gene expression. Here, we document for the first time that CARHSP1 is regulated by nutrient status in the liver and functions at the transcriptional level to negatively regulate gluconeogenic genes, including the glucose-6-phosphatase catalytic subunit (G6Pc) and phosphoenolpyruvate carboxykinase 1 (PEPCK1). In addition, we found that CARHSP1 can physically interact with peroxisome proliferator-activated receptor-α (PPARα) and inhibit its transcriptional activity. Both pharmacological and genetic ablations of PPARα attenuate the inhibitory effect of CARHSP1 on gluconeogenic gene expression in hepatocytes. Our data suggest that CARHSP1 inhibits hepatic gluconeogenic gene expression via repression of PPARα and that CARHSP1 may be a molecular target for the treatment of diabetes.


Circulation | 2018

Bmal1 in Perivascular Adipose Tissue Regulates Resting Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen

Lin Chang; Wenhao Xiong; Xiangjie Zhao; Yanbo Fan; Yanhong Guo; Minerva T. Garcia-Barrio; Jifeng Zhang; Zhi-Sheng Jiang; Jiandie D. Lin; Y. Eugene Chen

Background: The perivascular adipose tissue (PVAT) surrounding vessels constitutes a distinct functional integral layer of the vasculature required to preserve vascular tone under physiological conditions. However, there is little information on the relationship between PVAT and blood pressure regulation, including its potential contributions to circadian blood pressure variation. Methods: Using unique brown adipocyte–specific aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) and angiotensinogen knockout mice, we determined the vasoactivity of homogenized PVAT in aortic rings and how brown adipocyte peripheral expression of Bmal1 and angiotensinogen in PVAT regulates the amplitude of diurnal change in blood pressure in mice. Results: We uncovered a peripheral clock in PVAT and demonstrated that loss of Bmal1 in PVAT reduces blood pressure in mice during the resting phase, leading to a superdipper phenotype. PVAT extracts from wild-type mice significantly induced contractility of isolated aortic rings in vitro in an endothelium-independent manner. This property was impaired in PVAT from brown adipocyte–selective Bmal1-deficient (BA-Bmal1-KO) mice. The PVAT contractile properties were mediated by local angiotensin II, operating through angiotensin II type 1 receptor–dependent signaling in the isolated vessels and linked to PVAT circadian regulation of angiotensinogen. Indeed, angiotensinogen mRNA and angiotensin II levels in PVAT of BA-Bmal1-KO mice were significantly reduced. Systemic infusion of angiotensin II, in turn, reduced Bmal1 expression in PVAT while eliminating the hypotensive phenotype during the resting phase in BA-Bmal1-KO mice. Angiotensinogen, highly expressed in PVAT, shows circadian expression in PVAT, and selective deletion of angiotensinogen in brown adipocytes recapitulates the phenotype of selective deletion of Bmal1 in brown adipocytes. Furthermore, angiotensinogen is a transcriptional target of Bmal1 in PVAT. Conclusions: These data indicate that local Bmal1 in PVAT regulates angiotensinogen expression and the ensuing increase in angiotensin II, which acts on smooth muscle cells in the vessel walls to regulate vasoactivity and blood pressure in a circadian fashion during the resting phase. These findings will contribute to a better understanding of the cardiovascular complications of circadian disorders, alterations in the circadian dipping phenotype, and cross-talk between systemic and peripheral regulation of blood pressure.

Collaboration


Dive into the Yanbo Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanhong Guo

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Haocheng Lu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Zhang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Chang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge