Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanfang Xu is active.

Publication


Featured researches published by Yanfang Xu.


Circulation Research | 2000

Changes in Ca2+ Cycling Proteins Underlie Cardiac Action Potential Prolongation in a Pressure-Overloaded Guinea Pig Model With Cardiac Hypertrophy and Failure

Gias U. Ahmmed; Pei Hong Dong; Guoji Song; Nancy Ball; Yanfang Xu; Richard A. Walsh; Nipavan Chiamvimonvat

Ventricular arrhythmias are common in both cardiac hypertrophy and failure; cardiac failure in particular is associated with a significant increase in the risk of sudden cardiac death. We studied the electrophysiologic changes in a guinea pig model with aortic banding resulting in cardiac hypertrophy at 4 weeks and progressing to cardiac failure at 8 weeks using whole-cell patch-clamp and biochemical techniques. Action potential durations (APDs) were significantly prolonged in banded animals at 4 and 8 weeks compared with age-matched sham-operated animals. APDs at 50% and 90% repolarization (APD(50) and APD(90) in ms) were the following: 4 week, banded, 208+/-51 and 248+/-49 (n = 15); 4 week, sham, 189+/-68 and 213+/-69 (n = 16); 8 week, banded, 197+/-40 and 226+/-40 (n = 21); and 8 week, sham, 156+/-42 and 189+/-45 (n = 22), respectively; P<0.05 comparing banded versus sham-operated animals. We observed no significant differences in the K(+) currents between the 2 groups of animals at 4 and 8 weeks. However, banded animals exhibited a significant increase in Na(+) and Na(+)-Ca(2+) exchange current densities compared with controls. Furthermore, we have found a significant attenuation in the Ca(2+)-dependent inactivation of the L-type Ca(2+) current in the banded compared with sham-operated animals, likely as a result of the significant downregulation of the sarcoplasmic reticulum Ca(2+) ATPase, which has been documented previously in the heart failure animals. Our data provide an alternate mechanism for APD prolongation in cardiac hypertrophy and failure and support the notion that there is close interaction between Ca(2+) handling and action potential profile.


Circulation | 2005

Functional Roles of Cav1.3(α1D) Calcium Channels in Atria Insights Gained From Gene-Targeted Null Mutant Mice

Zhao Zhang; Yuxia He; Dipika Tuteja; Danyan Xu; Valeriy Timofeyev; Qian Zhang; Kathryn A. Glatter; Yanfang Xu; Hee Sup Shin; Reginald I. Low; Nipavan Chiamvimonvat

Background— Previous data suggest that L-type Ca 2+ channels containing the Ca v 1.3(α 1D ) subunit are expressed mainly in neurons and neuroendocrine cells, whereas those containing the Ca v 1.2(α 1C ) subunit are found in the brain, vascular smooth muscle, and cardiac tissue. However, our previous report as well as others have shown that Ca v 1.3 Ca 2+ channel–deficient mice ( Ca v 1.3 −/− ) demonstrate sinus bradycardia with a prolonged PR interval. In the present study, we extended our study to examine the role of the Ca v 1.3(α 1D ) Ca 2+ channel in the atria of Ca v 1.3 −/− mice. Methods and Results— We obtained new evidence to demonstrate that there is significant expression of Ca v 1.3 Ca 2+ channels predominantly in the atria compared with ventricular tissues. Whole-cell L-type Ca 2+ currents ( I Ca,L ) recorded from single, isolated atrial myocytes from Ca v 1.3 −/− mice showed a significant depolarizing shift in voltage-dependent activation. In contrast, there were no significant differences in the I Ca,L recorded from ventricular myocytes from wild-type and null mutant mice. We previously documented the hyperpolarizing shift in the voltage-dependent activation of Ca v 1.3 compared with Ca v 1.2 Ca 2+ channel subunits in a heterologous expression system. The lack of Ca v 1.3 Ca 2+ channels in null mutant mice would result in a depolarizing shift in the voltage-dependent activation of I Ca,L in atrial myocytes. In addition, the Ca v 1.3 -null mutant mice showed evidence of atrial arrhythmias, with inducible atrial flutter and fibrillation. We further confirmed the isoform-specific differential expression of Ca v 1.3 versus Ca v 1.2 by in situ hybridization and immunofluorescence confocal microscopy. Conclusions— Using gene-targeted deletion of the Ca v 1.3 Ca 2+ channel, we established the differential distribution of Ca v 1.3 Ca 2+ channels in atrial myocytes compared with ventricles. Our data represent the first report demonstrating important functional roles for Ca v 1.3 Ca 2+ channel in atrial tissues.Background—Previous data suggest that L-type Ca2+ channels containing the Cav1.3(α1D) subunit are expressed mainly in neurons and neuroendocrine cells, whereas those containing the Cav1.2(α1C) subunit are found in the brain, vascular smooth muscle, and cardiac tissue. However, our previous report as well as others have shown that Cav1.3 Ca2+ channel–deficient mice (Cav1.3−/−) demonstrate sinus bradycardia with a prolonged PR interval. In the present study, we extended our study to examine the role of the Cav1.3(α1D) Ca2+ channel in the atria of Cav1.3−/− mice. Methods and Results—We obtained new evidence to demonstrate that there is significant expression of Cav1.3 Ca2+ channels predominantly in the atria compared with ventricular tissues. Whole-cell L-type Ca2+ currents (ICa,L) recorded from single, isolated atrial myocytes from Cav1.3−/− mice showed a significant depolarizing shift in voltage-dependent activation. In contrast, there were no significant differences in the ICa,L recorded from ventricular myocytes from wild-type and null mutant mice. We previously documented the hyperpolarizing shift in the voltage-dependent activation of Cav1.3 compared with Cav1.2 Ca2+ channel subunits in a heterologous expression system. The lack of Cav1.3 Ca2+ channels in null mutant mice would result in a depolarizing shift in the voltage-dependent activation of ICa,L in atrial myocytes. In addition, the Cav1.3-null mutant mice showed evidence of atrial arrhythmias, with inducible atrial flutter and fibrillation. We further confirmed the isoform-specific differential expression of Cav1.3 versus Cav1.2 by in situ hybridization and immunofluorescence confocal microscopy. Conclusions—Using gene-targeted deletion of the Cav1.3 Ca2+ channel, we established the differential distribution of Cav1.3 Ca2+ channels in atrial myocytes compared with ventricles. Our data represent the first report demonstrating important functional roles for Cav1.3 Ca2+ channel in atrial tissues.


Circulation | 2005

Functional roles of Cav1.3(alpha1D) calcium channels in atria: insights gained from gene-targeted null mutant mice.

Zhao Zhang; Yuxia He; Dipika Tuteja; Danyan Xu; Timofeyev; Qian Zhang; Kathryn A. Glatter; Yanfang Xu; Hee-Sup Shin; Reginald I. Low; Nipavan Chiamvimonvat

Background— Previous data suggest that L-type Ca 2+ channels containing the Ca v 1.3(α 1D ) subunit are expressed mainly in neurons and neuroendocrine cells, whereas those containing the Ca v 1.2(α 1C ) subunit are found in the brain, vascular smooth muscle, and cardiac tissue. However, our previous report as well as others have shown that Ca v 1.3 Ca 2+ channel–deficient mice ( Ca v 1.3 −/− ) demonstrate sinus bradycardia with a prolonged PR interval. In the present study, we extended our study to examine the role of the Ca v 1.3(α 1D ) Ca 2+ channel in the atria of Ca v 1.3 −/− mice. Methods and Results— We obtained new evidence to demonstrate that there is significant expression of Ca v 1.3 Ca 2+ channels predominantly in the atria compared with ventricular tissues. Whole-cell L-type Ca 2+ currents ( I Ca,L ) recorded from single, isolated atrial myocytes from Ca v 1.3 −/− mice showed a significant depolarizing shift in voltage-dependent activation. In contrast, there were no significant differences in the I Ca,L recorded from ventricular myocytes from wild-type and null mutant mice. We previously documented the hyperpolarizing shift in the voltage-dependent activation of Ca v 1.3 compared with Ca v 1.2 Ca 2+ channel subunits in a heterologous expression system. The lack of Ca v 1.3 Ca 2+ channels in null mutant mice would result in a depolarizing shift in the voltage-dependent activation of I Ca,L in atrial myocytes. In addition, the Ca v 1.3 -null mutant mice showed evidence of atrial arrhythmias, with inducible atrial flutter and fibrillation. We further confirmed the isoform-specific differential expression of Ca v 1.3 versus Ca v 1.2 by in situ hybridization and immunofluorescence confocal microscopy. Conclusions— Using gene-targeted deletion of the Ca v 1.3 Ca 2+ channel, we established the differential distribution of Ca v 1.3 Ca 2+ channels in atrial myocytes compared with ventricles. Our data represent the first report demonstrating important functional roles for Ca v 1.3 Ca 2+ channel in atrial tissues.Background—Previous data suggest that L-type Ca2+ channels containing the Cav1.3(α1D) subunit are expressed mainly in neurons and neuroendocrine cells, whereas those containing the Cav1.2(α1C) subunit are found in the brain, vascular smooth muscle, and cardiac tissue. However, our previous report as well as others have shown that Cav1.3 Ca2+ channel–deficient mice (Cav1.3−/−) demonstrate sinus bradycardia with a prolonged PR interval. In the present study, we extended our study to examine the role of the Cav1.3(α1D) Ca2+ channel in the atria of Cav1.3−/− mice. Methods and Results—We obtained new evidence to demonstrate that there is significant expression of Cav1.3 Ca2+ channels predominantly in the atria compared with ventricular tissues. Whole-cell L-type Ca2+ currents (ICa,L) recorded from single, isolated atrial myocytes from Cav1.3−/− mice showed a significant depolarizing shift in voltage-dependent activation. In contrast, there were no significant differences in the ICa,L recorded from ventricular myocytes from wild-type and null mutant mice. We previously documented the hyperpolarizing shift in the voltage-dependent activation of Cav1.3 compared with Cav1.2 Ca2+ channel subunits in a heterologous expression system. The lack of Cav1.3 Ca2+ channels in null mutant mice would result in a depolarizing shift in the voltage-dependent activation of ICa,L in atrial myocytes. In addition, the Cav1.3-null mutant mice showed evidence of atrial arrhythmias, with inducible atrial flutter and fibrillation. We further confirmed the isoform-specific differential expression of Cav1.3 versus Cav1.2 by in situ hybridization and immunofluorescence confocal microscopy. Conclusions—Using gene-targeted deletion of the Cav1.3 Ca2+ channel, we established the differential distribution of Cav1.3 Ca2+ channels in atrial myocytes compared with ventricles. Our data represent the first report demonstrating important functional roles for Cav1.3 Ca2+ channel in atrial tissues.


The Journal of Physiology | 2005

The effects of intracellular Ca2+ on cardiac K+ channel expression and activity: novel insights from genetically altered mice

Yanfang Xu; Zhao Zhang; Valeriy Timofeyev; Dipika Sharma; Danyan Xu; Dipika Tuteja; Pei Hong Dong; Gias U. Ahmmed; Yong Ji; Gary E. Shull; Muthu Periasamy; Nipavan Chiamvimonvat

We tested the hypothesis that chronic changes in intracellular Ca2+ (Ca2+i) can result in changes in ion channel expression; this represents a novel mechanism of crosstalk between changes in Ca2+ cycling proteins and the cardiac action potential (AP) profile. We used a transgenic mouse with cardiac‐specific overexpression of sarcoplasmic reticulum Ca2+ ATPase (SERCA) isoform 1a (SERCA1a OE) with a significant alteration of SERCA protein levels without cardiac hypertrophy or failure. Here, we report significant changes in the expression of a transient outward K+ current (Ito,f), a slowly inactivating K+ current (IK,slow) and the steady state current (ISS) in the transgenic mice with resultant prolongation in cardiac action potential duration (APD) compared with the wild‐type littermates. In addition, there was a significant prolongation of the QT interval on surface electrocardiograms in SERCA1a OE mice. The electrophysiological changes, which correlated with changes in Ca2+i, were further corroborated by measuring the levels of ion channel protein expression. To recapitulate the in vivo experiments, the effects of changes in Ca2+i on ion channel expression were further tested in cultured adult and neonatal mouse cardiac myocytes. We conclude that a primary defect in Ca2+ handling proteins without cardiac hypertrophy or failure may produce profound changes in K+ channel expression and activity as well as cardiac AP.


Circulation | 2005

Functional Roles of Cav1.3(α1D) Calcium Channels in Atria

Zhao Zhang; Yuxia He; Dipika Tuteja; Danyan Xu; Valeriy Timofeyev; Qian Zhang; Kathryn A. Glatter; Yanfang Xu; Hee-Sup Shin; Reginald I. Low; Nipavan Chiamvimonvat

Background— Previous data suggest that L-type Ca 2+ channels containing the Ca v 1.3(α 1D ) subunit are expressed mainly in neurons and neuroendocrine cells, whereas those containing the Ca v 1.2(α 1C ) subunit are found in the brain, vascular smooth muscle, and cardiac tissue. However, our previous report as well as others have shown that Ca v 1.3 Ca 2+ channel–deficient mice ( Ca v 1.3 −/− ) demonstrate sinus bradycardia with a prolonged PR interval. In the present study, we extended our study to examine the role of the Ca v 1.3(α 1D ) Ca 2+ channel in the atria of Ca v 1.3 −/− mice. Methods and Results— We obtained new evidence to demonstrate that there is significant expression of Ca v 1.3 Ca 2+ channels predominantly in the atria compared with ventricular tissues. Whole-cell L-type Ca 2+ currents ( I Ca,L ) recorded from single, isolated atrial myocytes from Ca v 1.3 −/− mice showed a significant depolarizing shift in voltage-dependent activation. In contrast, there were no significant differences in the I Ca,L recorded from ventricular myocytes from wild-type and null mutant mice. We previously documented the hyperpolarizing shift in the voltage-dependent activation of Ca v 1.3 compared with Ca v 1.2 Ca 2+ channel subunits in a heterologous expression system. The lack of Ca v 1.3 Ca 2+ channels in null mutant mice would result in a depolarizing shift in the voltage-dependent activation of I Ca,L in atrial myocytes. In addition, the Ca v 1.3 -null mutant mice showed evidence of atrial arrhythmias, with inducible atrial flutter and fibrillation. We further confirmed the isoform-specific differential expression of Ca v 1.3 versus Ca v 1.2 by in situ hybridization and immunofluorescence confocal microscopy. Conclusions— Using gene-targeted deletion of the Ca v 1.3 Ca 2+ channel, we established the differential distribution of Ca v 1.3 Ca 2+ channels in atrial myocytes compared with ventricles. Our data represent the first report demonstrating important functional roles for Ca v 1.3 Ca 2+ channel in atrial tissues.Background—Previous data suggest that L-type Ca2+ channels containing the Cav1.3(α1D) subunit are expressed mainly in neurons and neuroendocrine cells, whereas those containing the Cav1.2(α1C) subunit are found in the brain, vascular smooth muscle, and cardiac tissue. However, our previous report as well as others have shown that Cav1.3 Ca2+ channel–deficient mice (Cav1.3−/−) demonstrate sinus bradycardia with a prolonged PR interval. In the present study, we extended our study to examine the role of the Cav1.3(α1D) Ca2+ channel in the atria of Cav1.3−/− mice. Methods and Results—We obtained new evidence to demonstrate that there is significant expression of Cav1.3 Ca2+ channels predominantly in the atria compared with ventricular tissues. Whole-cell L-type Ca2+ currents (ICa,L) recorded from single, isolated atrial myocytes from Cav1.3−/− mice showed a significant depolarizing shift in voltage-dependent activation. In contrast, there were no significant differences in the ICa,L recorded from ventricular myocytes from wild-type and null mutant mice. We previously documented the hyperpolarizing shift in the voltage-dependent activation of Cav1.3 compared with Cav1.2 Ca2+ channel subunits in a heterologous expression system. The lack of Cav1.3 Ca2+ channels in null mutant mice would result in a depolarizing shift in the voltage-dependent activation of ICa,L in atrial myocytes. In addition, the Cav1.3-null mutant mice showed evidence of atrial arrhythmias, with inducible atrial flutter and fibrillation. We further confirmed the isoform-specific differential expression of Cav1.3 versus Cav1.2 by in situ hybridization and immunofluorescence confocal microscopy. Conclusions—Using gene-targeted deletion of the Cav1.3 Ca2+ channel, we established the differential distribution of Cav1.3 Ca2+ channels in atrial myocytes compared with ventricles. Our data represent the first report demonstrating important functional roles for Cav1.3 Ca2+ channel in atrial tissues.


Circulation | 2005

Functional Roles of Ca v 1.3(α 1D ) Calcium Channels in Atria

Zhao Zhang; Yuxia He; Dipika Tuteja; Danyan Xu; Valeriy Timofeyev; Qian Zhang; Kathryn A. Glatter; Yanfang Xu; Hee-Sup Shin; Reginald I. Low; Nipavan Chiamvimonvat

Background— Previous data suggest that L-type Ca 2+ channels containing the Ca v 1.3(α 1D ) subunit are expressed mainly in neurons and neuroendocrine cells, whereas those containing the Ca v 1.2(α 1C ) subunit are found in the brain, vascular smooth muscle, and cardiac tissue. However, our previous report as well as others have shown that Ca v 1.3 Ca 2+ channel–deficient mice ( Ca v 1.3 −/− ) demonstrate sinus bradycardia with a prolonged PR interval. In the present study, we extended our study to examine the role of the Ca v 1.3(α 1D ) Ca 2+ channel in the atria of Ca v 1.3 −/− mice. Methods and Results— We obtained new evidence to demonstrate that there is significant expression of Ca v 1.3 Ca 2+ channels predominantly in the atria compared with ventricular tissues. Whole-cell L-type Ca 2+ currents ( I Ca,L ) recorded from single, isolated atrial myocytes from Ca v 1.3 −/− mice showed a significant depolarizing shift in voltage-dependent activation. In contrast, there were no significant differences in the I Ca,L recorded from ventricular myocytes from wild-type and null mutant mice. We previously documented the hyperpolarizing shift in the voltage-dependent activation of Ca v 1.3 compared with Ca v 1.2 Ca 2+ channel subunits in a heterologous expression system. The lack of Ca v 1.3 Ca 2+ channels in null mutant mice would result in a depolarizing shift in the voltage-dependent activation of I Ca,L in atrial myocytes. In addition, the Ca v 1.3 -null mutant mice showed evidence of atrial arrhythmias, with inducible atrial flutter and fibrillation. We further confirmed the isoform-specific differential expression of Ca v 1.3 versus Ca v 1.2 by in situ hybridization and immunofluorescence confocal microscopy. Conclusions— Using gene-targeted deletion of the Ca v 1.3 Ca 2+ channel, we established the differential distribution of Ca v 1.3 Ca 2+ channels in atrial myocytes compared with ventricles. Our data represent the first report demonstrating important functional roles for Ca v 1.3 Ca 2+ channel in atrial tissues.Background—Previous data suggest that L-type Ca2+ channels containing the Cav1.3(α1D) subunit are expressed mainly in neurons and neuroendocrine cells, whereas those containing the Cav1.2(α1C) subunit are found in the brain, vascular smooth muscle, and cardiac tissue. However, our previous report as well as others have shown that Cav1.3 Ca2+ channel–deficient mice (Cav1.3−/−) demonstrate sinus bradycardia with a prolonged PR interval. In the present study, we extended our study to examine the role of the Cav1.3(α1D) Ca2+ channel in the atria of Cav1.3−/− mice. Methods and Results—We obtained new evidence to demonstrate that there is significant expression of Cav1.3 Ca2+ channels predominantly in the atria compared with ventricular tissues. Whole-cell L-type Ca2+ currents (ICa,L) recorded from single, isolated atrial myocytes from Cav1.3−/− mice showed a significant depolarizing shift in voltage-dependent activation. In contrast, there were no significant differences in the ICa,L recorded from ventricular myocytes from wild-type and null mutant mice. We previously documented the hyperpolarizing shift in the voltage-dependent activation of Cav1.3 compared with Cav1.2 Ca2+ channel subunits in a heterologous expression system. The lack of Cav1.3 Ca2+ channels in null mutant mice would result in a depolarizing shift in the voltage-dependent activation of ICa,L in atrial myocytes. In addition, the Cav1.3-null mutant mice showed evidence of atrial arrhythmias, with inducible atrial flutter and fibrillation. We further confirmed the isoform-specific differential expression of Cav1.3 versus Cav1.2 by in situ hybridization and immunofluorescence confocal microscopy. Conclusions—Using gene-targeted deletion of the Cav1.3 Ca2+ channel, we established the differential distribution of Cav1.3 Ca2+ channels in atrial myocytes compared with ventricles. Our data represent the first report demonstrating important functional roles for Cav1.3 Ca2+ channel in atrial tissues.


Journal of Biological Chemistry | 2003

Molecular Identification and Functional Roles of a Ca2+-activated K+ Channel in Human and Mouse Hearts

Yanfang Xu; Dipika Tuteja; Zhao Zhang; Danyan Xu; Yi Zhang; Jennifer Rodriguez; Liping Nie; Holly Tuxson; J. Nilas Young; Kathryn A. Glatter; Ana E. Vázquez; Ebenezer N. Yamoah; Nipavan Chiamvimonvat


American Journal of Physiology-heart and Circulatory Physiology | 2005

Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes.

Dipika Tuteja; Danyan Xu; Valeriy Timofeyev; Ling Lu; Dipika Sharma; Zhao Zhang; Yanfang Xu; Liping Nie; Ana E. Vázquez; J. Nilas Young; Kathryn A. Glatter; Nipavan Chiamvimonvat


Journal of Biological Chemistry | 2000

Disruption of a Single Copy of the SERCA2 Gene Results in Altered Ca2+ Homeostasis and Cardiomyocyte Function

Yong Ji; M. Jane Lalli; Gopal J. Babu; Yanfang Xu; Darryl L. Kirkpatrick; Lynne H. Liu; Nipavan Chiamvimonvat; Richard A. Walsh; Gary E. Shull; Muthu Periasamy


Circulation Research | 2001

Nitric Oxide Modulates Cardiac Na+ Channel via Protein Kinase A and Protein Kinase G

Gias U. Ahmmed; Yanfang Xu; Pei Hong Dong; Zhao Zhang; Jason Eiserich; Nipavan Chiamvimonvat

Collaboration


Dive into the Yanfang Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhao Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Danyan Xu

University of California

View shared research outputs
Top Co-Authors

Avatar

Dipika Tuteja

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei Hong Dong

University of California

View shared research outputs
Top Co-Authors

Avatar

Qian Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dipika Sharma

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge