Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yang Bai is active.

Publication


Featured researches published by Yang Bai.


Journal of High Energy Physics | 2010

The Tevatron at the Frontier of Dark Matter Direct Detection

Yang Bai; Patrick J. Fox; Roni Harnik

Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. We study these bounds both in the case where there is a contact interaction between DM and the standard model and where there is a mediator kinematically accessible at the Tevatron. We find that in many cases the Tevatron provides the current best limit, particularly for light dark matter, below ∼5 GeV, a and for spin dependent interactions. Non-standard dark matter candidates are also constrained. The introduction of a light mediator significantly weakens the collider bound. A direct detection discovery that is in apparent conflict with mono-jet limits will thus point to a new light state coupling the standard model to the dark sector. Mono-jet searches with more luminosity and including the spectrum shape in the analysis can improve the constraints on DM-nucleon scattering cross section.


Physical Review D | 2016

750 GeV dark pion: Cousin of a dark G -parity odd WIMP

Yang Bai; J. Berger; Ran Lu

We point out a potential common origin of the recently observed 750 GeV diphoton resonance and a Weakly Interacting Massive Particle (WIMP) candidate. In a dark QCD sector with an unbroken dark G-parity, the diphoton resonance could be a dark G-even pion, while the WIMP could be the lightest dark G-odd pion. Both particles are Standard Model gauge singlets and have the same decay constant. For the dark pion decay constant of around 500 GeV, both the diphoton excess at the LHC and the dark matter thermal abundance can be accommodated in our model. Our model predicts additional dark G-even and dark G-odd color-octet pions within reach of the 13 TeV LHC runs. For the 5 + ¯ model, compatible with the Grand Unified Theories, the WIMP


Physical Review D | 2010

Light dilaton in walking gauge theories

Thomas Appelquist; Yang Bai

We analyze the existence of a dilaton in gauge theories with approximate infrared conformal symmetry. To the extent that these theories are governed in the infrared by an approximate fixed point (walking), the explicit breaking of the conformal symmetry at these scales is vanishingly small. If confinement and spontaneous chiral-symmetry breaking set in at some infrared scale, the resultant breaking of the approximate conformal symmetry can lead to the existence of a dilaton with mass parametrically small compared to the confinement scale, and potentially observable at the LHC.


Journal of High Energy Physics | 2016

Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin

Yang Bai; Ran Lu; Jordi Salvado

A bstractWe perform a geometric analysis for the sky map of the IceCube TeV-PeV neutrino excess and test its compatibility with the sky map of decaying dark matter signals in our galaxy. We have found that a galactic decaying dark matter component in general improve the goodness of the fit of our model, although the pure isotropic hypothesis has a better fit than the pure dark matter one. We also consider several representative decaying dark matter, which can provide a good fit to the observed spectrum at IceCube with a dark matter lifetime of around 12 orders of magnitude longer than the age of the universe.


Journal of High Energy Physics | 2014

Lepton Portal Dark Matter

Yang Bai; J. Berger

A bstractWe study a class of simplified dark matter models in which dark matter couples directly with a mediator and a charged lepton. This class of Lepton Portal dark matter models has very rich phenomenology: it has loop generated dark matter electromagnetic moments that generate a direct detection signal; it contributes to indirect detection in the cosmic positron flux via dark matter annihilation; it provides a signature of the same-flavor, opposite-sign dilepton plus missing transverse energy at colliders. We determine the current experimental constraints on the model parameter space for Dirac fermion, Majorana fermion and complex scalar dark matter cases of the Lepton Portal framework. We also perform a collider study for the 14 TeV LHC reach with 100 inverse femtobarns for dark matter parameter space. For the complex scalar dark matter case, the LHC provides a very stringent constraint and its reach can be interpreted as corresponding to a limit as strong as two tenths of a zeptobarn on the dark matter-nucleon scattering cross section for dark matter masses up to 500 GeV. We also demonstrate that one can improve the current collider searches by using a Breit-Wigner like formula to fit the dilepton MT2 tail of the dominant diboson background.


Journal of High Energy Physics | 2014

Pulling out all the stops: searching for RPV SUSY with stop-jets

Yang Bai; Andrey Katz; Brock Tweedie

A bstractIf the lighter stop eigenstate decays directly to two jets via baryonic R-parity violation, it could have escaped existing LHC and Tevatron searches in four-jet events, even for masses as small as 100 GeV. In order to recover sensitivity in the face of increasingly harsh trigger requirements at the LHC, we propose a search for stop pairs in the highly-boosted regime, using the approaches of jet substructure. We demonstrate that the four-jet triggers can be completely bypassed by using inclusive jet-HT triggers, and that the resulting QCD continuum background can be processed by substructure methods into a featureless spectrum suitable for a data-driven bump-hunt down to 100 GeV. We estimate that the LHC 8 TeV run is sensitive to 100 GeV stops with decays of any flavor at better than 5σ-level, and could place exclusions up to 300 GeV or higher. Assuming Minimal Flavor Violation and running a b-tagged analysis, exclusion reach may extend up to nearly 400 GeV. Longer-term, the 14 TeV LHC at 300 fb−1 could extend these mass limits by a factor of two, while continuing to improve sensitivity in the 100 GeV region.


Journal of High Energy Physics | 2009

Top-antitop and Top-top Resonances in the Dilepton Channel at the CERN LHC

Yang Bai; Zhenyu Han

We perform a model-independent study for top-antitop and top-top resonances in the dilepton channel at the Large Hadtron Collider. In this channel, we can solve the kinematic system to obtain the momenta of all particles including the two neutrinos, and hence the resonance mass and spin. For discovering top-antitop resonances, the dilepton channel is competitive to the semileptonic channel because of the good resolution of lepton momentum measurement and small standard model backgrounds. Moreover, the charges of the two leptons can be identified, which makes the dilepton channel advantageous for discovering top-top resonances and for distinguishing resonance spins. We discuss and provide resolutions for difficulties associated with heavy resonances and highly boosted top quarks.


Physical Review D | 2009

Unified dark matter model in a singlet extension of the universal extra dimension model

Yang Bai; Zhenyu Han

We propose a dark matter model with standard model singlet extension of the universal extra dimension model (sUED) to explain the recent observations of ATIC, PPB-BETS, PAMELA and DAMA. Other than the standard model fields propagating in the bulk of a 5-dimensional space, one fermion field and one scalar field are introduced and both are standard model singlets. The zero mode of the new fermion is identified as the righthanded neutrino, while its first KK mode is the lightest KK-odd particle and the dark matter candidate. The cosmic ray spectra from ATIC and PPB-BETS determine the dark matter particle mass and hence the fifth dimension compactification scale to be 1.0– 1.6 TeV. The zero mode of the singlet scalar field with a mass below 1 GeV provides an attractive force between dark matter particles, which allows a Sommerfeld enhancement to boost the annihilation cross section in the Galactic halo to explain the PAMELA data. The DAMA annual modulation results are explained by coupling the same scalar field to the electron via a higher-dimensional operator. We analyze the model parameter space that can satisfy the dark matter relic abundance and accommodate all the dark matter detection experiments. We also consider constraints from the diffuse extragalactic gammaray background, which can be satisfied if the dark matter particle and the first KK-mode of the scalar field have highly degenerate masses.


Journal of High Energy Physics | 2012

Gamma Lines without a Continuum: Thermal Models for the Fermi-LAT 130 GeV Gamma Line

Yang Bai; Jessie Shelton

A bstractRecent claims of a line in the Fermi-LAT photon spectrum at 130 GeV are suggestive of dark matter annihilation in the galactic center and other dark matter-dominated regions. If the Fermi feature is indeed due to dark matter annihilation, the best-fit line cross-section, together with the lack of any corresponding excess in continuum photons, poses an interesting puzzle for models of thermal dark matter: the line cross-section is too large to be generated radiatively from open Standard Model annihilation modes, and too small to provide efficient dark matter annihilation in the early universe. We discuss two mechanisms to solve this puzzle and illustrate each with a simple reference model in which the dominant dark matter annihilation channel is photonic final states. The first mechanism we employ is resonant annihilation, which enhances the annihilation cross-section during freezeout and allows for a sufficiently large present-day annihilation cross section. Second, we consider cascade annihilation, with a hierarchy between p-wave and s-wave processes. Both mechanisms require mass near-degeneracies and predict states with masses closely related to the dark matter mass; resonant freezeout in addition requires new charged particles at the TeV scale.


Physical Review D | 2009

The PAMELA excess from neutralino annihilation in the NMSSM

Yang Bai; J. Lykken; Marcela Carena

We examine whether the cosmic ray positron excess observed by PAMELA can be explained by neutralino annihilation in the next-to-minimal supersymmetric standard model (NMSSM). The main dark matter annihilation products are the lightest CP-even scalar h 1 plus the lightest CP-odd scalar a 1 with the a 1 decaying into two muons. The energetic positrons needed to explain PAMELA are thus obtained in the NMSSM simply from kinematics. The required large annihilation cross section is obtained from an s-channel resonance with the heavier CP-odd scalar a 2 . Various experiments constrain the PAMELA-favored NMSSM parameter space, including collider searches for a light a 1· These constraints point to a unique comer of the NMSSM parameter space, having a lightest neutralino mass around 160 GeV and a very light pseudoscalar mass less than a GeV. A simple parametrized formula for the charge-dependent solar modulation effects reconciles the discrepancy between the PAMELA data and the estimated background at lower energies. We also discuss the electron and gamma-ray spectra from the Fermi LAT observations, and point out the discrepancy between the NMSSM predictions and Fermi LAT preliminary results and possible resolution. An NMSSM explanation of PAMELA makes three striking and uniquely correlated predictions: the rise in the PAMELA positron spectrum will turn over at around 70 GeV, the dark matter particle mass is less than the top quark mass, and a light sub-GeV pseudoscalar will be discovered at colliders.

Collaboration


Dive into the Yang Bai's collaboration.

Top Co-Authors

Avatar

J. Berger

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ran Lu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben A. Stefanek

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Osborne

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

V. Barger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jordi Salvado

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge