Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yang C. Fann is active.

Publication


Featured researches published by Yang C. Fann.


Journal of Biological Chemistry | 1999

Phenoxyl Free Radical Formation during the Oxidation of the Fluorescent Dye 2′,7′-Dichlorofluorescein by Horseradish Peroxidase POSSIBLE CONSEQUENCES FOR OXIDATIVE STRESS MEASUREMENTS

Cristina Rota; Yang C. Fann; Ronald P. Mason

The oxidation of the fluorescent dye 2′,7′-dichlorofluorescein (DCF) by horseradish peroxidase was investigated by optical absorption, electron spin resonance (ESR), and oxygen consumption measurements. Spectrophotometric measurements showed that DCF could be oxidized either by horseradish peroxidase-compound I or -compound II with the obligate generation of the DCF phenoxyl radical (DCF⋅). This one-electron oxidation was confirmed by ESR spin-trapping experiments. DCF⋅ oxidizes GSH, generating the glutathione thiyl radical (GS⋅), which was detected by the ESR spin-trapping technique. In this case, oxygen was consumed by a sequence of reactions initiated by the GS⋅ radical. Similarly, DCF⋅ oxidized NADH, generating the NAD⋅ radical that reduced oxygen to superoxide (O⨪2), which was also detected by the ESR spin-trapping technique. Superoxide dismutated to generate H2O2, which reacted with horseradish peroxidase, setting up an enzymatic chain reaction leading to H2O2 production and oxygen consumption. In contrast, when ascorbic acid reduced the DCF phenoxyl radical back to its parent molecule, it formed the unreactive ascorbate anion radical. Clearly, DCF catalytically stimulates the formation of reactive oxygen species in a manner that is dependent on and affected by various biochemical reducing agents. This study, together with our earlier studies, demonstrates that DCFH cannot be used conclusively to measure superoxide or hydrogen peroxide formation in cells undergoing oxidative stress.


The FASEB Journal | 2002

In vivo lipid-derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide: a model for ARDS

Keizo Sato; Maria B. Kadiiska; Andrew J. Ghio; Jean T. Corbett; Yang C. Fann; Steven M. Holland; Ronald G. Thurman; Ronald P. Mason

Intratracheal instillation of lipopolysaccharide (LPS) activates alveolar macrophages and infiltration of neutrophils, causing lung injury/acute respiratory distress syndrome. Free radicals are a special focus as the final causative molecules in the pathogenesis of lung injury caused by LPS. Although in vitro investigation has demonstrated radical generation after exposure of cells to LPS, in vivo evidence is lacking. Using electron spin resonance (ESR) and the spin trap a‐(4‐pyridyl‐1‐oxide)‐N‐tert‐butylnitrone (POBN), we investigated in vivo free radical production by rats treated with intratracheal instillation of LPS. ESR spectroscopy of lipid extract from lungs exposed to LPS for 6 h gave a spectrum consistent with that of a POBN/ carbon‐centered radical adduct (aN=14.94±0.07 G and a:H=2.42±0.06 G) tentatively assigned as a product of lipid peroxidation. To further investigate the mechanism of LPS‐initiated free radical generation, rats were pretreated with the phagocytic toxicant GdCl3, which significantly decreased the production of radical ad‐ducts with a Corresponding decrease in neutrophil infiltration. NADPH oxidase knockout mice completely blocked phagocyte‐mediated, ESR‐detectable radical production in this model of acute lung injury. Rats treated intratracheally with LPS generate lipid‐derived free radicals via activation of NADPH oxidase.—Sato, K., Kadiiska, M. B., Ghio, A. J., Corbett, J., Fann, Y. C., Holland, S. M., Thurman, R. G., Mason, R. P. In vivo lipid‐derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide: a model for ARDS. FASEB J. 16, 1713–1720 (2002)


PLOS Genetics | 2012

Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis

Hong Hao; Douglas S. Kim; Bernward Klocke; Kory R. Johnson; Kairong Cui; Norimoto Gotoh; Chongzhi Zang; Janina Gregorski; Linn Gieser; Weiqun Peng; Yang C. Fann; Martin Seifert; Keji Zhao; Anand Swaroop

A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP–Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP–Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.


American Journal of Human Genetics | 2009

Mutations in a BTB-Kelch Protein, KLHL7, Cause Autosomal-Dominant Retinitis Pigmentosa

James S. Friedman; Joseph W. Ray; Naushin Waseem; Kory R. Johnson; Matthew Brooks; Therése Hugosson; Debra K. Breuer; Kari Branham; Daniel S. Krauth; Sara J. Bowne; Lori S. Sullivan; Vesna Ponjavic; Lotta Gränse; Ritu Khanna; Edward H. Trager; Linn Gieser; Dianna Hughbanks-Wheaton; Radu Cojocaru; Noor M. Ghiasvand; Christina Chakarova; Magnus Abrahamson; Harald H H Göring; Andrew R. Webster; David G. Birch; Gonçalo R. Abecasis; Yang C. Fann; Shomi S. Bhattacharya; Stephen P. Daiger; John R. Heckenlively; Sten Andréasson

Retinitis pigmentosa (RP) refers to a genetically heterogeneous group of progressive neurodegenerative diseases that result in dysfunction and/or death of rod and cone photoreceptors in the retina. So far, 18 genes have been identified for autosomal-dominant (ad) RP. Here, we describe an adRP locus (RP42) at chromosome 7p15 through linkage analysis in a six-generation Scandinavian family and identify a disease-causing mutation, c.449G-->A (p.S150N), in exon 6 of the KLHL7 gene. Mutation screening of KLHL7 in 502 retinopathy probands has revealed three different missense mutations in six independent families. KLHL7 is widely expressed, including expression in rod photoreceptors, and encodes a 75 kDa protein of the BTB-Kelch subfamily within the BTB superfamily. BTB-Kelch proteins have been implicated in ubiquitination through Cullin E3 ligases. Notably, all three putative disease-causing KLHL7 mutations are within a conserved BACK domain; homology modeling suggests that mutant amino acid side chains can potentially fill the cleft between two helices, thereby affecting the ubiquitination complexes. Mutations in an identical region of another BTB-Kelch protein, gigaxonin, have previously been associated with giant axonal neuropathy. Our studies suggest an additional role of the ubiquitin-proteasome protein-degradation pathway in maintaining neuronal health and in disease.


Biochemical Journal | 2002

Identification of protein-derived tyrosyl radical in the reaction of cytochrome c and hydrogen peroxide: characterization by ESR spin-trapping, HPLC and MS.

Steven Y. Qian; Yeong-Renn Chen; Leesa J. Deterding; Yang C. Fann; Colin F. Chignell; Kenneth B. Tomer; Ronald P. Mason

The reaction of cytochrome c and H(2)O(2) is known to form a protein-centred radical that can be detected with the spin trap 2-methyl-2-nitrosopropane (MNP). To characterize the MNP/tyrosyl adduct structure that had previously been determined incorrectly [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503], we eliminated unreasonable structure models by ESR studies with a series of (13)C-labelled tyrosines, and photochemically synthesized an authentic MNP/tyrosyl adduct that has its trapping site on the C-3 position of the tyrosine phenyl ring. The observation of the identical ESR spectra for this radical adduct from the UV irradiation of 3-iodo-tyrosine and the adduct from the cytochrome c reaction demonstrated that the radical trapping site of MNP/tyrosyl is located on the equivalent C-3/C-5 positions instead of the C-1 position, as was proposed by Barr et al. In an on-line HPLC/ESR system, an identical retention time (17.7 min) was observed for the ESR-active HPLC peak of the MNP/tyrosyl adduct from the following three reactions: (i) the tyrosine oxidation via horseradish peroxidase/H(2)O(2); (ii) UV irradiation of 3-iodo-tyrosine and (iii) the reaction of cytochrome c with H(2)O(2). This result demonstrated that the radical adducts of all three reactions are most probably the same. The mass spectrometric analysis of the HPLC fractions from reactions (i) and (ii) showed an ion at m/z 267 attributed to the MNP/tyrosyl adduct. We conclude that the cytochrome c-derived tyrosyl radical was trapped by MNP, leading to a persistent radical adduct at the C-3/C-5 positions of the tyrosine phenyl ring.


Free Radical Biology and Medicine | 2003

EPR spectroscopy studies on the structural transition of nitrosyl hemoglobin in the arterial-venous cycle of DEANO-treated rats as it relates to the proposed nitrosyl hemoglobin/nitrosothiol hemoglobin exchange

Adrian R Jaszewski; Yang C. Fann; Yeong-Renn Chen; Keizo Sato; Jean T. Corbett; Ronald P. Mason

In vivo studies show a dynamic cycle in which alpha-nitrosylated hemoglobin is mainly in the relaxed state in arterial blood of rats treated with 2-(N,N-diethylamino)-diazenolate-2-oxide, but converts mainly to the tense state during the arterial-venous transit. A detailed analysis shows that different electron paramagnetic resonance spectra recorded for alpha-nitrosyl hemoglobin in arterial and venous blood at 77 K originate only from a different ratio between 5- and 6-coordinate heme without any change in the concentration of nitrosyl hemoglobin. In venous blood, the five- and six-coordination equilibrium of the alpha-nitrosyl heme is shifted in favor of the 5-coordinate state (58% venous vs. 20% arterial). These results are not consistent with the recently proposed exchange of nitrosyl heme with the beta-93 nitrosothiol group of hemoglobin during the arterial-venous cycle.


PLOS ONE | 2008

Horizontal Gene Transfers Link a Human MRSA Pathogen to Contagious Bovine Mastitis Bacteria

Thomas Brody; Amarendra S. Yavatkar; Yong-Shiang Lin; Jermaine Ross; Alexander Kuzin; Mukta Kundu; Yang C. Fann; Ward F. Odenwald

Background Acquisition of virulence factors and antibiotic resistance by many clinically important bacteria can be traced to horizontal gene transfer (HGT) between related or evolutionarily distant microflora. Comparative genomic analysis has become an important tool for identifying HGT DNA in emerging pathogens. We have adapted the multi-genome alignment tool EvoPrinter to facilitate discovery of HGT DNA sequences within bacterial genomes and within their mobile genetic elements. Principal Findings EvoPrinter analysis of 13 different Staphylococcus aureus genomes revealed that one of the human isolates, the hospital epidemic methicillin-resistant MRSA252 strain, uniquely shares multiple putative HGT DNA sequences with different causative agents of bovine mastitis that are not found in the other human S. aureus isolates. MRSA252 shares over 14 different DNA sequence blocks with the bovine mastitis ET3 S. aureus strain RF122, and many of the HGT DNAs encode virulence factors. EvoPrinter analysis of the MRSA252 chromosome also uncovered virulence-factor encoding HGT events with the genome of Listeria monocytogenes and a Staphylococcus saprophyticus associated plasmid. Both bacteria are also causal agents of contagious bovine mastitis. Conclusions EvoPrinter analysis reveals that the human MRSA252 strain uniquely shares multiple DNA sequence blocks with different causative agents of bovine mastitis, suggesting that HGT events may be occurring between these pathogens. These findings have important implications with regard to animal husbandry practices that inadvertently enhance the contact of human and livestock bacterial pathogens.


Stem Cell Research | 2014

Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin.

Barbara S. Mallon; Rebecca S. Hamilton; Olga A. Kozhich; Kory R. Johnson; Yang C. Fann; Mahendra S. Rao; Pamela Gehron Robey

Many studies have compared the genetic and epigenetic profiles of human induced pluripotent stem cells (hiPSCs) to human embryonic stem cells (hESCs) and yet the picture remains unclear. To address this, we derived a population of neural precursor cells (NPCs) from the H1 (WA01) hESC line and generated isogenic iPSC lines by reprogramming. The gene expression and methylation profile of three lines were compared to the parental line and intermediate NPC population. We found no gene probe with expression that differed significantly between hESC and iPSC samples under undifferentiated or differentiated conditions. Analysis of the global methylation pattern also showed no significant difference between the two PSC populations. Both undifferentiated populations were distinctly different from the intermediate NPC population in both gene expression and methylation profiles. One point to note is that H1 is a male line and so extrapolation to female lines should be cautioned. However, these data confirm our previous findings that there are no significant differences between hESCs and hiPSCs at the gene expression or methylation level.


BMC Genomics | 2008

Rapid detection and curation of conserved DNA via enhanced-BLAT and EvoPrinterHD analysis

Amarendra S. Yavatkar; Yong Lin; Jermaine Ross; Yang C. Fann; Thomas Brody; Ward F. Odenwald

BackgroundMulti-genome comparative analysis has yielded important insights into the molecular details of gene regulation. We have developed EvoPrinter, a web-accessed genomics tool that provides a single uninterrupted view of conserved sequences as they appear in a species of interest. An EvoPrint reveals with near base-pair resolution those sequences that are essential for gene function.ResultsWe describe here EvoPrinterHD, a 2nd-generation comparative genomics tool that automatically generates from a single input sequence an enhanced view of sequence conservation between evolutionarily distant species. Currently available for 5 nematode, 3 mosquito, 12 Drosophila, 20 vertebrate, 17 Staphylococcus and 20 enteric bacteria genomes, EvoPrinterHD employs a modified BLAT algorithm [enhanced-BLAT (eBLAT)], which detects up to 75% more conserved bases than identified by the BLAT alignments used in the earlier EvoPrinter program. The new program also identifies conserved sequences within rearranged DNA, highlights repetitive DNA, and detects sequencing gaps. EvoPrinterHD currently holds over 112 billion bp of indexed genomes in memory and has the flexibility of selecting a subset of genomes for analysis. An EvoDifferences profile is also generated to portray conserved sequences that are uniquely lost in any one of the orthologs. Finally, EvoPrinterHD incorporates options that allow for (1) re-initiation of the analysis using a different genomes aligning region as the reference DNA to detect species-specific changes in less-conserved regions, (2) rapid extraction and curation of conserved sequences, and (3) for bacteria, identifies unique or uniquely shared sequences present in subsets of genomes.ConclusionEvoPrinterHD is a fast, high-resolution comparative genomics tool that automatically generates an uninterrupted species-centric view of sequence conservation and enables the discovery of conserved sequences within rearranged DNA. When combined with cis-Decoder, a program that discovers sequence elements shared among tissue specific enhancers, EvoPrinterHD facilitates the analysis of conserved sequences that are essential for coordinate gene regulation.


Scientific Reports | 2017

The impact of the RBM4-initiated splicing cascade on modulating the carcinogenic signature of colorectal cancer cells

Jung Chun Lin; Yuan Chii Lee; Yu Chih Liang; Yang C. Fann; Kory R. Johnson; Ying Ju Lin

A growing body of studies has demonstrated that dysregulated splicing profiles constitute pivotal mechanisms for carcinogenesis. In this study, we identified discriminative splicing profiles of colorectal cancer (CRC) cells compared to adjacent normal tissues using deep RNA-sequencing (RNA-seq). The RNA-seq results and cohort studies indicated a relatively high ratio of exon 4-excluded neuro-oncological ventral antigen 1 (Nova1−4) and intron 2-retained SRSF6 (SRSF6+intron 2) transcripts in CRC tissues and cell lines. Nova1 variants exhibited differential effects on eliminating SRSF6 expression in CRC cells by inducing SRSF6+intron 2 transcripts which were considered to be the putative target of alternative splicing-coupled nonsense-mediated decay mechanism. Moreover, the splicing profile of vascular endothelial growth factor (VEGF)165/VEGF165b transcripts was relevant to SRSF6 expression, which manipulates the progression of CRC calls. These results highlight the novel and hierarchical role of an alternative splicing cascade that is involved in the development of CRC.

Collaboration


Dive into the Yang C. Fann's collaboration.

Top Co-Authors

Avatar

Kory R. Johnson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ronald P. Mason

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amarendra S. Yavatkar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jean T. Corbett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jung Chun Lin

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Yu Chih Liang

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuan Chii Lee

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Anand Swaroop

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barbara S. Mallon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Calvin A. Johnson

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge