Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yang D. Teng is active.

Publication


Featured researches published by Yang D. Teng.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway

Jaime Imitola; Kook In Park; Franz Josef Mueller; Marta Nieto; Yang D. Teng; Dan Frenkel; Jianxue Li; Richard L. Sidman; Christopher A. Walsh; Evan Y. Snyder; Samia J. Khoury

Migration toward pathology is the first critical step in stem cell engagement during regeneration. Neural stem cells (NSCs) migrate through the parenchyma along nonstereotypical routes in a precise directed manner across great distances to injury sites in the CNS, where they might engage niches harboring local transiently expressed reparative signals. The molecular mechanisms for NSC mobilization have not been identified. Because NSCs seem to home similarly to pathologic sites derived from disparate etiologies, we hypothesized that the inflammatory response itself, a characteristic common to all, guides the behavior of potentially reparative cells. As proof of concept, we show that human NSCs migrate in vivo (including from the contralateral hemisphere) toward an infarcted area (a representative CNS injury), where local astrocytes and endothelium up-regulate the inflammatory chemoattractant stromal cell-derived factor 1α (SDF-1α). NSCs express CXC chemokine receptor 4 (CXCR4), the cognate receptor for SDF-1α. Exposure of SDF-1α to quiescent NSCs enhances proliferation, promotes chain migration and transmigration, and activates intracellular molecular pathways mediating engagement. CXCR4 blockade abrogates their pathology-directed chain migration, a developmentally relevant mode of tangential migration that, if recapitulated, could explain homing along nonstereotypical paths. Our data implicate SDF-1α/CXCR4, representative of the inflammatory milieu characterizing many pathologies, as a pathway that activates NSC molecular programs during injury and suggest that inflammation may be viewed not simply as playing an adverse role but also as providing stimuli that recruit cells with a regenerative homeostasis-promoting capacity. CXCR4 expression within germinal zones suggests that NSC homing after injury and migration during development may invoke similar mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells

Yang D. Teng; Erin B. Lavik; Xianlu Qu; Kook In Park; Jitka Ourednik; David Zurakowski; Robert Langer; Evan Y. Snyder

To better direct repair following spinal cord injury (SCI), we designed an implant modeled after the intact spinal cord consisting of a multicomponent polymer scaffold seeded with neural stem cells. Implantation of the scaffold–neural stem cells unit into an adult rat hemisection model of SCI promoted long-term improvement in function (persistent for 1 year in some animals) relative to a lesion-control group. At 70 days postinjury, animals implanted with scaffold-plus-cells exhibited coordinated, weight-bearing hindlimb stepping. Histology and immunocytochemical analysis suggested that this recovery might be attributable partly to a reduction in tissue loss from secondary injury processes as well as in diminished glial scarring. Tract tracing demonstrated corticospinal tract fibers passing through the injury epicenter to the caudal cord, a phenomenon not present in untreated groups. Together with evidence of enhanced local GAP-43 expression not seen in controls, these findings suggest a possible regeneration component. These results may suggest a new approach to SCI and, more broadly, may serve as a prototype for multidisciplinary strategies against complex neurological problems.


Nature Biotechnology | 2002

The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue

Kook In Park; Yang D. Teng; Evan Y. Snyder

Hypoxic-ischemic injury is a prototype for insults characterized by extensive tissue loss. Seeding neural stem cells (NSCs) onto a polymer scaffold that was subsequently implanted into the infarction cavities of mouse brains injured by hypoxia-ischemia allowed us to observe the multiple reciprocal interactions that spontaneously ensue between NSCs and the extensively damaged brain: parenchymal loss was dramatically reduced, an intricate meshwork of many highly arborized neurites of both host- and donor-derived neurons emerged, and some anatomical connections appeared to be reconstituted. The NSC–scaffold complex altered the trajectory and complexity of host cortical neurites. Reciprocally, donor-derived neurons were seemingly capable of directed, target-appropriate neurite outgrowth (extending axons to the opposite hemisphere) without specific external instruction, induction, or genetic manipulation of host brain or donor cells. These “biobridges” appeared to unveil or augment a constitutive reparative response by facilitating a series of reciprocal interactions between NSC and host, including promoting neuronal differentiation, enhancing the elaboration of neural processes, fostering the re-formation of cortical tissue, and promoting connectivity. Inflammation and scarring were also reduced, facilitating reconstitution.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells

D. Eugene Redmond; Kimberly B. Bjugstad; Yang D. Teng; Vaclav Ourednik; Jitka Ourednik; Dustin R. Wakeman; Xuejun H. Parsons; Rodolfo Gonzalez; Barbara C. Blanchard; Seung U. Kim; Zezong Gu; Stuart A. Lipton; Eleni A. Markakis; Robert H. Roth; John D. Elsworth; John R. Sladek; Richard L. Sidman; Evan Y. Snyder

Stem cells have been widely assumed to be capable of replacing lost or damaged cells in a number of diseases, including Parkinsons disease (PD), in which neurons of the substantia nigra (SN) die and fail to provide the neurotransmitter, dopamine (DA), to the striatum. We report that undifferentiated human neural stem cells (hNSCs) implanted into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated Parkinsonian primates survived, migrated, and had a functional impact as assessed quantitatively by behavioral improvement in this DA-deficit model, in which Parkinsonian signs directly correlate to reduced DA levels. A small number of hNSC progeny differentiated into tyrosine hydroxylase (TH) and/or dopamine transporter (DAT) immunopositive cells, suggesting that the microenvironment within and around the lesioned adult host SN still permits development of a DA phenotype by responsive progenitor cells. A much larger number of hNSC-derived cells that did not express neuronal or DA markers was found arrayed along the persisting nigrostriatal path, juxtaposed with host cells. These hNSCs, which express DA-protective factors, were therefore well positioned to influence host TH+ cells and mediate other homeostatic adjustments, as reflected in a return to baseline endogenous neuronal number-to-size ratios, preservation of extant host nigrostriatal circuitry, and a normalizing effect on α-synuclein aggregation. We propose that multiple modes of reciprocal interaction between exogenous hNSCs and the pathological host milieu underlie the functional improvement observed in this model of PD.


Experimental Neurology | 1996

Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-D-aspartate receptors

Jean R. Wrathall; Yang D. Teng; David Choiniere

Excitatory amino acid (EAA) receptors play a significant role in delayed neuronal death after ischemic and traumatic injury to the CNS. Recent data based on focal microinjection experiments have demonstrated that 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), a highly selective and potent antagonist of non-N-methyl-D-aspartate ionotropic EAA receptors, i.e., those preferring alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or kainate, can reduce histopathology and functional deficits after traumatic spinal cord injury (SCI). Thus, non-NMDA receptors at or near the injury site appear to be important in secondary injury processes that contribute significantly to the consequences of SCI. We have now examined the effects of systemic NBQX, using intravenous infusion, the most commonly used and temporally efficient clinical mode of drug administration. Standardized contusive SCI was produced at the T8 vertebral level in Sprague-Dawley rats. Beginning at 15 min postin-jury, NBQX was administered intravenously at 1 mg/kg/min for 30 min. Behavioral tests of hindlimb functional deficits were performed at 1 day and weekly for 1 month after SCI. Spinal cord tissue was then examined morphometrically to compare lesion size and amount of spared tissue. We found that intravenous administration of NBQX significantly reduced functional impairment after SCI. The effects included more rapid and extensive recovery of hindlimb reflexes, more rapid establishment of a reflex bladder, and a more rapid and greater degree of recovery of coordinated use of hindlimbs in open field locomotion, swimming, and maintaining position on an inclined plane. The profile of effects was similar to that seen with focal microinjection of NBQX, suggesting that even with systemic administration, the drug acts mainly at the injury site. Further, the results support a therapeutic potential for NBQX, or similar drugs that antagonize non-NMDA receptors and inhibit secondary injury processes after SCI.


The Journal of Neuroscience | 1997

Local Blockade of Sodium Channels by Tetrodotoxin Ameliorates Tissue Loss and Long-Term Functional Deficits Resulting from Experimental Spinal Cord Injury

Yang D. Teng; Jean R. Wrathall

Although relatively little is known of the mechanisms involved in secondary axonal loss after spinal cord injury (SCI), recent data fromin vitro models of white matter (WM) injury have implicated abnormal sodium influx as a key event. We hypothesized that blockade of sodium channels after SCI would reduce WM loss and long-term functional deficits. To test this hypothesis, a sufficient and safe dose (0.15 nmol) of the potent Na+ channel blocker tetrodotoxin (TTX) was determined through a dose–response study. We microinjected TTX or vehicle (VEH) into the injury site at 15 min after a standardized contusive SCI in the rat. Behavioral tests were performed 1 d after injury and weekly thereafter. Quantitative histopathology at 8 weeks postinjury showed that TTX treatment significantly reduced tissue loss at the injury site, with greater effect on sparing of WM than gray matter. TTX did not change the pattern of chronic histopathology typical of this SCI model, but restricted its extent, tripled the area of residual WM at the epicenter, and reduced the average length of the lesions. Serotonin immunoreactivity caudal to the epicenter, a marker for descending motor control axons, was nearly threefold that of VEH controls. The increase in WM at the epicenter was significantly correlated with the decrease in functional deficits. The TTX group exhibited a significantly enhanced recovery of coordinated hindlimb functions, more normal hindlimb reflexes, and earlier establishment of a reflex bladder. The results demonstrate that Na+ channels play a critical role in WM loss in vivo after SCI.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host

Johan Jäderstad; Linda Maria Jäderstad; Jianxue Li; Satyan Chintawar; Carmen Saltó; Massimo Pandolfo; Vaclav Ourednik; Yang D. Teng; Richard L. Sidman; Ernest Arenas; Evan Y. Snyder; Eric Herlenius

How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication.


Experimental Neurology | 1997

Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma.

Jean R. Wrathall; Yang D. Teng; Robert Marriott

Excitatory amino acid (EAA) receptors play a significant role in delayed neuronal death after ischemic and traumatic injury to the CNS. Focal microinjection experiments have demonstrated that 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), a highly selective and potent antagonist of non-N-methyl-D-aspartate ionotropic EAA receptors, i.e., those preferring alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or kainate, can reduce histopathology and functional deficits when administered at 15 min after traumatic spinal cord injury (SCI). Similarly, intravenous infusion of NBQX, beginning at 15 min postinjury (p.i.), results in a significant amelioration of the functional deficits produced by experimental SCI. However, if antagonists of AMPA/kainate receptors were to be used therapeutically for patients with SCI, administration would likely be delayed for several hours after injury. We therefore examined the effects of NBQX administered at 4 h after SCI on functional deficits and histopathology in a standardized rat model of contusive SCI. An incomplete SCI was produced in Sprague-Dawley rats at T8 with a weight-drop device (10 g x 2.5 cm). NBQX (15 nmol), or vehicle alone, was microinjected into the injury site 4 h later. Recovery of hind limb reflexes, postural control, and locomotor function was determined by a battery of behavioral tests performed for 8 weeks. Spinal cord tissue was then fixed by perfusion and used for morphometric and immunocytochemical analyses. Previous studies with acute NBQX treatment showed significant functional improvement by 1 week; the effects of delayed NBQX treatment on functional deficits were not discernible until 3-4 weeks after SCI. Thereafter, significant reductions in hindlimb deficits were demonstrated in two independent studies. The nature and magnitude of the reductions in chronic deficits were similar to those observed previously when NBQX was administered acutely at 15 min after SCI. Morphometric analyses showed that delayed treatment with NBQX resulted in sparing of gray matter adjacent to the injury site but no significant effect on the area of white matter at the epicenter. However, serotonin immunoreactivity below the lesion, used as a marker for preservation of one supraspinal pathway, was significantly higher in the NBQX-treated group. These results support a therapeutic potential for NBQX, and presumably other AMPA antagonists, in SCI by demonstrating effectiveness in a clinically relevant time frame. They indicate the importance of assessing chronic functional deficits in evaluating the therapeutic potential of a treatment paradigm. Further, they suggest the intriguing hypothesis that mechanisms underlying early functional recovery after SCI are, at least in part, distinct those from those involved in reducing chronic functional deficits.


European Journal of Neuroscience | 1998

Basic and acidic fibroblast growth factors protect spinal motor neurones in vivo after experimental spinal cord injury.

Yang D. Teng; Italo Mocchetti; Jean R. Wrathall

We studied the effect of a single focal injection of recombinant basic (FGF2) or acidic (FGF1) fibroblast growth factor on the survival of spinal motor neurones at 24 h after a standardized spinal cord contusion injury (SCI) in the rat. Both FGF2 and FGF1 (3 μg), microinjected into the injury site at 5 min post‐injury (p.i.), protected at least two functionally important classes of spinal motor neurones, autonomic preganglionic neurones in the intermediolateral (IML) column and somatic motor neurones in the ventral horn (VH). Moreover, there was enhanced choline acetyltransferase (ChAT) immunoreactivity in surviving VH and IML neurones, suggesting an improved functional status. Thus, neurotrophic factors such as FGF2 and FGF1 may contribute to an overall strategy to treat acute SCI and improve recovery of function.


Experimental Neurology | 2008

HUMAN NEURAL STEM CELLS MIGRATE ALONG THE NIGROSTRIATAL PATHWAY IN A PRIMATE MODEL OF PARKINSON’S DISEASE

Kimberly B. Bjugstad; Yang D. Teng; D. Eugene Redmond; John D. Elsworth; Robert H. Roth; Shannon K. Cornelius; Evan Y. Snyder; John R. Sladek

Although evidence of damage-directed neural stem cell (NSC) migration has been well-documented in the rodent, to our knowledge it has never been confirmed or quantified using human NSC (hNSC) in an adult non-human primate modeling a human neurodegenerative disease state. In this report, we attempt to provide that confirmation, potentially advancing basic stem cell concepts toward clinical relevance. hNSCs were implanted into the caudate nucleus (bilaterally) and substantia nigra (unilaterally) of 7, adult St. Kitts African green monkeys (Chlorocebus sabaeus) with previous exposure to systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that disrupts the dopaminergic nigrostriatal pathway. A detailed quantitative analysis of hNSC migration patterns at two time points (4 and 7 months) following transplantation was performed. Density contour mapping of hNSCs along the dorsal-ventral and medial-lateral axes of the brain suggested that >80% of hNSCs migrated from the point of implantation to and along the impaired nigrostriatal pathway. Although 2/3 of hNSCs were transplanted within the caudate, <1% of 3x10(6) total injected donor cells were identified at this site. The migrating hNSC did not appear to be pursuing a neuronal lineage. In the striatum and nigrostriatal pathway, but not in the substantia nigra, some hNSCs were found to have taken a glial lineage. The property of neural stem cells to align themselves along a neural pathway rendered dysfunctional by a given disease is potentially a valuable clinical tool.

Collaboration


Dive into the Yang D. Teng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dou Yu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Alexander E. Ropper

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Inbo Han

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jean R. Wrathall

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Langer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jianxue Li

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge