Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yang-hsin Shih is active.

Publication


Featured researches published by Yang-hsin Shih.


Water Science and Technology | 2010

Stability of metal oxide nanoparticles in aqueous solutions

Chih-ping Tso; Cheng-min Zhung; Yang-hsin Shih; Young-Ming Tseng; Shian-Chee Wu; Ruey-an Doong

The application of nanoparticles in the processes of making commercial products has increased in recent years due to their unique physical and chemical properties. With increasing amount of commercial nanoparticles released into nature, their fate and effects on the ecosystem and human health are of growing concern. This study investigated the stability and morphology of three metal oxide nanoparticles in aqueous solutions. The commercially available nanoparticles, TiO(2), ZnO, SiO(2), aggregated quickly into micrometer-size particles in aqueous solutions, which may not threaten human health. Their changes in morphology and characteristics were further examined by dynamic light scattering (DLS) method and transmission electron microscopy (TEM). Among the several dispersion approaches, ultrasonication was found to be the most effective for disaggregating nanoparticles in water. For these three selected nanoparticles, ZnO could not remain stable in suspensions, presumably due to the dissolution of particles to form high concentration of ions, resulting in enhanced aggregation of particles. In addition, the existence of dissolved organic matters stabilized nanoparticles in lake water and wastewater for several hours in spite of the high concentration of cations in these real-water samples. The fate of metal oxide nanoparticles in natural water bodies would be determined by the type and concentration of cations and organic matters. Results obtained in this study revealed that the stability of nanoparticles changed under different aqueous conditions and so did their fate in the environment.


Chemosphere | 2010

Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles.

Yang-hsin Shih; Yu-tsung Tai

Polybrominated diphenyl ethers (PBDEs) recognized as a new class of environmental persistent toxic contaminants have been distributed widely in the world. In this study, the synthesized nanoscale zerovalent iron (NZVI) in the laboratory was used to investigate the removal kinetics and mechanisms of decabrominated diphenyl ether (DBDE) at different pH. Within 40 min 90% of DBDE was rapidly removed by NZVI as compared to around 40 d needed for 24-fold weight of microscale ZVI. The removal by NZVI is much faster than that by microscale ZVI due to its high surface area and reactivity. At a different pH, the pseudo-first-order removal rate constants of DBDE linearly increased from 0.016 to 0.024 min(-1) with the decreasing of aqueous initial pH values from 10 to 5. The degradation of DBDE with NZVI is favorable in an acid condition. The debromination pathways of DBDE with NZVI were proposed on the basis of the identified reaction intermediates ranging from nona- to mono-brominated diphenyl ethers (BDEs) for an acid condition and from nona- to penta-BDEs for an alkaline condition. The debromination of PBDEs from para positions is more difficult than that from meta or ortho positions. Adsorption on NZVI also plays a role on the removal of DBDE. These findings can facilitate the treatment and fate prediction of PBDEs with NZVI in the environment.


Journal of Hazardous Materials | 2009

Photolytic degradation of polybromodiphenyl ethers under UV-lamp and solar irradiations

Yang-hsin Shih; Chun-Kang Wang

Polybromodiphenyl ethers (PBDEs) are widely used flame retardant additives and have been mainly used in polymers for many plastic and electronic products. PBDEs have been found to bioaccumulate in both aquatic and terrestrial ecosystems and even human bodies. The technical product with the highest use is decabrominated diphenyl ether (BDE-209). Therefore, we chose to examine the solar and UV-lamp degradation of BDE-209. A linear increase of the photodegradation rate constant for BDE-209 was observed with the solar light intensity. The degradation reactions follow the pseudo-first-order kinetics. The photodegradation of BDE-209 produced other less brominated diphenyl ethers under ultraviolet light exposure, suggesting that the photodegradation of BDE-209 is a sequential dehalogenation mechanism. BDE-209 underwent rapid reductive debromination in these photodecomposition experiments. The formation rate constants of three nonabromodiphenyl ethers increase with the order of BDE-206, BDE-207 and BDE-208, indicating debromination mainly occurred at para>meta>ortho positions. These findings of the process properties and reductive debromination mechanism of the photolytic degradation of PBDEs can facilitate the design of remediation processes and also aid in predicting their fate in the environment.


Chemosphere | 2012

Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron.

Yuh-fan Su; Chung-yu Hsu; Yang-hsin Shih

The effect of several anions and cations normally co-present in soil and groundwater contamination sites on the degradation kinetics and removal efficiency of hexachlorobenzene (HCB) by nanoscale zero-valent iron (NZVI) particles was examined. The degradation kinetics was not influenced by the HCO(3)(-), Mg(2+), and Na(+) ions. It was enhanced in the presence of the Cl(-) and SO(4)(2-) ions due to their corrosion promotion. The NO(3)(-) competes with HCB so it inhibits the degradation reaction. The Fe(2+) ions would inhibit the degradation reaction due to passivation layer formed, while it was enhanced in the presence of Cu(2+) ions resulted from the reduced form of copper on NZVI surfaces. These observations lead to a better understanding of HCB dechlorination with NZVI particles and can facilitate the remediation design and prediction of treatment efficiency of HCB at remediation sites.


Environmental Toxicology and Chemistry | 2012

Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions

Yang-hsin Shih; Wei-Szu Liu; Yuh-fan Su

The present study aims to evaluate the effect of inorganic ions on the aggregation kinetics of stabilized titanium dioxide (TiO(2) ) nanoparticle (NP) suspension, an NP mode widely used in consumer goods and in aquatic environments. The point of zero charge of stabilized TiO(2) NPs was approximately pH 6.5. The particle size of the stabilized TiO(2) NP suspensions increased with the increase in salt concentrations. The additional salts caused the shift of zeta potentials of TiO(2) suspensions to a lower value. The TiO(2) NPs aggregated more obviously in the presence of anions than cations, and the effect of divalent anions was larger than that of monovalent anions. The critical coagulation concentration (CCC) values for commercial TiO(2) NP suspensions with positive surfaces were estimated as 290 and 2.3 meq/L for Cl(-) and SO 42-, respectively. These CCC values of stabilized TiO(2) NP suspensions are higher than those of TiO(2) NP powders, indicating greater stability of the commercial stabilized TiO(2) NP suspensions. The effects of commercial TiO(2) NP suspensions still need to be explored and defined. Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis can explain the aggregation behaviors of stabilized TiO(2) NP suspensions. Such an understanding can facilitate the prediction of NP fate in the environment.


Journal of Environmental Management | 2013

Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes

Yuh-fan Su; Yu-ling Cheng; Yang-hsin Shih

Activated carbon (AC) and zerovalent iron (ZVI) have been widely used in the adsorption and dehalogenation process, respectively, for the removal of organic compounds in environmental treatments. This study aims to prepare ZVI/AC derived from an agricultural waste, coir pith, through simple one-step pyrolysis. The effect of activation temperature and time on the surface area, iron content, and zerovalent iron ratio of ZVI/AC was systemically investigated. The results indicated that the activation of AC by FeSO4 significantly increased surface area of AC and distributed elemental iron over the AC. The X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and X-ray absorption near edge structure (XANES) spectra of ZVI/AC revealed that zerovalent iron was present. As compared to AC without FeSO4 activation, ZVI/AC increased the trichloroethylene removal rate constant by 7 times. The dechlorination ability of ZVI/AC was dominated by the zerovalent iron content. We have shown that lab-made ZVI/AC from coir pith can effectively adsorb and dehalogenate the chlorinated compounds in water.


Bioresource Technology | 2012

Synergistic effect of microscale zerovalent iron particles combined with anaerobic sludges on the degradation of decabromodiphenyl ether.

Yang-hsin Shih; Hsi-Ling Chou; Yu-Huei Peng; Chih-yuan Chang

Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants. Owing to their toxicity and increasing accumulation in the environment, the fate of PBDEs in nature is of serious concern. The combined effects of microscale zerovalent iron (MZVI) and anaerobic sludge in decabromodiphenyl ether (BDE-209) degradation were investigated. The co-incubation resulted in 63% and 29% enhancement of removal ability when compared to the single component conditions. By-products generated during the entire process followed a stepwise sequence with non-uniform accumulation rates. Microbes hindered the accessibility of MZVI to BDE-209 and reduced the removal ability in the initial stage (<12 h). According to the analysis of the microbial community change, co-incubation with MZVI leads to the enrichment of heterotrophic microbial populations bearing nitrate- or iron-reducing activities. The interaction between MZVI and microbes contributed to the synergistic effect. Our findings provide evidence for this synergistic effect and offer an alternative for developing better remediation strategies.


Journal of Nanoparticle Research | 2012

The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

Wei-Szu Liu; Yu-Huei Peng; Chia-En Shiung; Yang-hsin Shih

Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8–9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin–Landau–Verwey–Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.


Journal of Hazardous Materials | 2012

Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

Yang-hsin Shih; Hsi-Ling Chou; Yu-Huei Peng

Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H(2) gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.


Journal of Hazardous Materials | 2015

Biodegradation of bisphenol A with diverse microorganisms from river sediment

Yu-Huei Peng; Ya-jou Chen; Ying-jie Chang; Yang-hsin Shih

The wide distribution of bisphenol A (BPA) in the environment is problematic because of its endocrine-disrupting characteristics and toxicity. Developing cost-effective remediation methods for wide implementation is crucial. Therefore, this study investigated the BPA biodegradation ability of various microorganisms from river sediment. An acclimated microcosm completely degraded 10 mg L(-1) BPA within 28 h and transformed the contaminant into several metabolic intermediates. During the degradation process, the microbial compositions fluctuated and the final, predominant microorganisms were Pseudomonas knackmussii and Methylomonas clara. From the original river sediment, we isolated four distinct strains, which deplete the BPA over 7-9 days. They were all genetically similar to P. knackmussii. The degradation ability of mixed strains was higher than that of single strain but was far less than that of the microbial consortium. The novel BPA degradation ability of P. knackmussii and its role in the decomposing microcosm were first demonstrated. Our results revealed that microbial diversity plays a crucial role in pollutant decomposition.

Collaboration


Dive into the Yang-hsin Shih's collaboration.

Top Co-Authors

Avatar

Yu-Huei Peng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yuh-fan Su

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chih-ping Tso

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Shian-Chee Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chien-Ying Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Siang Chen Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Cheng-han Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Mei-syue Li

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Meng-yi Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Cheng-ming Zhuang

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge